设函数f(x)在[a,b]内连续且单调,f(a)f(b)<;0,则在区间[a,b]内方程f(x)=0有()个实根。
A: 0
B: 1
C: 2
D: 3
E: 4
F: 5
A: 0
B: 1
C: 2
D: 3
E: 4
F: 5
举一反三
- 设函数f(x)在区间[a,b]上连续,若满足( ) ,则方程f(x)=0在区间[a,b]内一定有实根。 A: f(a)+f(b)<0 B: f(a)+f(b)>0 C: f(a)f(b)<0 D: f(a)f(b)>0
- 设函数f(x)在区间[a,b]上连续,若满足( ) ,则方程f(x)=0在区间[a,b]内一定有实根。 A: f(a)+f(b)<0 B: f(a)+f(b)>0 C: f(a)f(b)<0 D: f(a)f(b)>0
- 设函数f(x)在区间[a,b]上连续,若满足_____________,则方程f(x)=0在区间[a,b]一定有实根。 未知类型:{'options': ['f(a)f(b)>;=0', ' f(a)f(b)>;0', ' f(a)f(b)<;0', ' [img=87x19]17e0b8ca443f29e.jpg[/img]'], 'type': 102}
- 设f(X)及g(X)在[a,b]上连续(a<b),证明:(1)若在[a,b]上f(x)>=0,且∫f(x)dx=0,则在[a,b]上f(x)恒等于0(2)若在[a,b]上f(x)>=g(x),且∫f(x)dx=∫g(x)dx,则在[a,b]上f(x)恒等于g(x)
- 若f(x) 在 [a,b]上连续且f(a)≥0,在区间(a,b)内fˊ(x)>;0,则在(a,b)内有()。 A: f(x)>;0 B: f(x)<;0 C: f(x)=0 D: 不能确定