证明 :若函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在有限或无穷的区间(a,b)内有有界的导数[tex=2.214x1.429]i+dnt0m+Vi0IpEF4DSu/zA==[/tex]则f(x)在(a,b)中一致连续.
举一反三
- 证明: 若函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在有限的区间[tex=2.214x1.357]64K7dNQOvQBam/0oBbondA==[/tex]内可微,但无界,则其导数[tex=2.214x1.429]i+dnt0m+Vi0IpEF4DSu/zA==[/tex]在区间[tex=2.214x1.357]64K7dNQOvQBam/0oBbondA==[/tex]内也无界.逆定理不真(举出例子).
- 设函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在有限的或无穷的区间[tex=2.214x1.357]64K7dNQOvQBam/0oBbondA==[/tex]中的任意- -点有有限的导数[tex=2.214x1.429]i+dnt0m+Vi0IpEF4DSu/zA==[/tex]且[tex=9.643x1.929]MhC0sa4kP8ihnFHLNuEHS338yCKfIj+LZHlCZFepfvBDAFGARVhF2tcql7MsapTsIIb5hjRNKK0d0NAbMyqDEQ==[/tex]证明[tex=3.357x1.429]fc/C420zB9MrbM3hJ3ScPg==[/tex]其中c为区间[tex=2.214x1.357]64K7dNQOvQBam/0oBbondA==[/tex]中的某点.
- 设 [tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex] 是定义在 [tex=1.214x1.214]YiUtaNKPTk7KugrVopd0dw==[/tex] 上的可微函数, 且 [tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex] 与 [tex=2.214x1.429]i+dnt0m+Vi0IpEF4DSu/zA==[/tex] 都是 [tex=1.214x1.214]YiUtaNKPTk7KugrVopd0dw==[/tex] 上的可积函数. 试证明 [tex=6.357x2.643]QBplUUa9cxVwbrHZ12pGboOdHSmXF2YFvRPxyAAWPh7Baqq75fCO4bhFBmgQJ3yY[/tex].
- 设连续函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的导数处处存在,且[tex=2.214x1.429]i+dnt0m+Vi0IpEF4DSu/zA==[/tex]是可和的.假如[tex=6.286x1.429]85njov5qY15eO07P3P2tCPNotopVduoN7LcdsWWrEGzvTOmeV/dZOgYvjkrAjNaB[/tex]至多是可列集,则[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex] 为绝对连续函数.
- 设[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]是特征为 0 的域, [tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]为[tex=1.786x1.357]DpXALeWBl8+QhoNGSoieqQ==[/tex]中正次数首 1 多项式, [tex=8.071x1.429]vFFvVPk/i2XV6w2VPKZQh9i1pSauwZXtLf9P2wlxnyL29DvspcoFvesFz7r+ZLaC[/tex], 其中[tex=2.214x1.429]i+dnt0m+Vi0IpEF4DSu/zA==[/tex]是[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的导数. 求证: [tex=6.857x1.357]hCN+dCAlIOnVqUEyVn04UECiDvBNy60wfGeoT81WTs8=[/tex]和[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]有同样的根, 并且[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]无重根.