举一反三
- 证明: 若函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在有限的区间[tex=2.214x1.357]64K7dNQOvQBam/0oBbondA==[/tex]内可微,但无界,则其导数[tex=2.214x1.429]i+dnt0m+Vi0IpEF4DSu/zA==[/tex]在区间[tex=2.214x1.357]64K7dNQOvQBam/0oBbondA==[/tex]内也无界.逆定理不真(举出例子).
- 设函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在有限的或无穷的区间[tex=2.214x1.357]64K7dNQOvQBam/0oBbondA==[/tex]中的任意- -点有有限的导数[tex=2.214x1.429]i+dnt0m+Vi0IpEF4DSu/zA==[/tex]且[tex=9.643x1.929]MhC0sa4kP8ihnFHLNuEHS338yCKfIj+LZHlCZFepfvBDAFGARVhF2tcql7MsapTsIIb5hjRNKK0d0NAbMyqDEQ==[/tex]证明[tex=3.357x1.429]fc/C420zB9MrbM3hJ3ScPg==[/tex]其中c为区间[tex=2.214x1.357]64K7dNQOvQBam/0oBbondA==[/tex]中的某点.
- 设 [tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex] 是定义在 [tex=1.214x1.214]YiUtaNKPTk7KugrVopd0dw==[/tex] 上的可微函数, 且 [tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex] 与 [tex=2.214x1.429]i+dnt0m+Vi0IpEF4DSu/zA==[/tex] 都是 [tex=1.214x1.214]YiUtaNKPTk7KugrVopd0dw==[/tex] 上的可积函数. 试证明 [tex=6.357x2.643]QBplUUa9cxVwbrHZ12pGboOdHSmXF2YFvRPxyAAWPh7Baqq75fCO4bhFBmgQJ3yY[/tex].
- 设连续函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的导数处处存在,且[tex=2.214x1.429]i+dnt0m+Vi0IpEF4DSu/zA==[/tex]是可和的.假如[tex=6.286x1.429]85njov5qY15eO07P3P2tCPNotopVduoN7LcdsWWrEGzvTOmeV/dZOgYvjkrAjNaB[/tex]至多是可列集,则[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex] 为绝对连续函数.
- 设[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]是特征为 0 的域, [tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]为[tex=1.786x1.357]DpXALeWBl8+QhoNGSoieqQ==[/tex]中正次数首 1 多项式, [tex=8.071x1.429]vFFvVPk/i2XV6w2VPKZQh9i1pSauwZXtLf9P2wlxnyL29DvspcoFvesFz7r+ZLaC[/tex], 其中[tex=2.214x1.429]i+dnt0m+Vi0IpEF4DSu/zA==[/tex]是[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的导数. 求证: [tex=6.857x1.357]hCN+dCAlIOnVqUEyVn04UECiDvBNy60wfGeoT81WTs8=[/tex]和[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]有同样的根, 并且[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]无重根.
内容
- 0
设函数f具有一阶连续导数,f''(0)存在,且f'(0)=0,f(0)=0,[tex=11.143x2.929]FgiJWgRQAKO6KUAKNMtpr42BveQYl/ToVviQ5cCtM9wcSY0QBIbGsihuelZ2Y0bAzYEbycD2Q2vfi4GC2Ijs1kB6/BRoIojNsaonEeVPYMMzs1ywITo1iMnLUJQZym3e[/tex].(1)确定a,使得g(x)处处连续;(2)对以上所确定的a,证明g(x)具有一阶连续导数.
- 1
证明:若单调有界函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]可取到[tex=1.857x1.357]RATHhMM+aZZTABv/ShIDpw==[/tex],[tex=1.714x1.357]vWo7kUqXgseeDQ/rfab+vQ==[/tex]之间的一切值,则[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=2.214x1.357]mpyYBdP7k8056w1o+qOOxw==[/tex]连续.
- 2
设函数f(x)在[tex=3.286x1.357]64m0xE4nFlaKGIakApV0PA==[/tex]上连续,且有f(0)=0及f'(x)单调增,证明:在[tex=3.5x1.357]vgrW1/jK/GZ1TOWaPFIQWA==[/tex]上函数[tex=5.071x2.429]KmCvFjqAEA9O51+9erVGP+KtDDqVtXZQWqxj1eiTO5k=[/tex]是单调增的。
- 3
证明:如果函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在区间上连续,则函数[tex=2.429x1.357]9cM+yXmMqe9Sxnqa+l2Eqg==[/tex]在同一区间上连续 .
- 4
设[tex=2.214x1.429]i+dnt0m+Vi0IpEF4DSu/zA==[/tex]在[tex=1.857x1.357]bawv/j+LZ1l+o4ciN/29dA==[/tex]上连续,在[tex=1.857x1.357]bawv/j+LZ1l+o4ciN/29dA==[/tex] 内可导, [tex=8.071x1.429]OAKNUgNilvva3jjhpGDuyHfXB6Vpb0HZ9tZUHbsSkn+T5T2iDUtIHpZ/3/r1gu9U[/tex], 证明: [tex=5.214x1.429]IjXlhkMhr9LwCKTDiko+hpKIZWd+1PbgIxo7JGm9Pr4=[/tex].