设连续函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的导数处处存在,且[tex=2.214x1.429]i+dnt0m+Vi0IpEF4DSu/zA==[/tex]是可和的.假如[tex=6.286x1.429]85njov5qY15eO07P3P2tCPNotopVduoN7LcdsWWrEGzvTOmeV/dZOgYvjkrAjNaB[/tex]至多是可列集,则[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex] 为绝对连续函数.
举一反三
- 证明 :若函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在有限或无穷的区间(a,b)内有有界的导数[tex=2.214x1.429]i+dnt0m+Vi0IpEF4DSu/zA==[/tex]则f(x)在(a,b)中一致连续.
- 设 [tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex] 是定义在 [tex=1.214x1.214]YiUtaNKPTk7KugrVopd0dw==[/tex] 上的可微函数, 且 [tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex] 与 [tex=2.214x1.429]i+dnt0m+Vi0IpEF4DSu/zA==[/tex] 都是 [tex=1.214x1.214]YiUtaNKPTk7KugrVopd0dw==[/tex] 上的可积函数. 试证明 [tex=6.357x2.643]QBplUUa9cxVwbrHZ12pGboOdHSmXF2YFvRPxyAAWPh7Baqq75fCO4bhFBmgQJ3yY[/tex].
- 设[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]是特征为 0 的域, [tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]为[tex=1.786x1.357]DpXALeWBl8+QhoNGSoieqQ==[/tex]中正次数首 1 多项式, [tex=8.071x1.429]vFFvVPk/i2XV6w2VPKZQh9i1pSauwZXtLf9P2wlxnyL29DvspcoFvesFz7r+ZLaC[/tex], 其中[tex=2.214x1.429]i+dnt0m+Vi0IpEF4DSu/zA==[/tex]是[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的导数. 求证: [tex=6.857x1.357]hCN+dCAlIOnVqUEyVn04UECiDvBNy60wfGeoT81WTs8=[/tex]和[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]有同样的根, 并且[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]无重根.
- 如果[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex] 在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上是连续的,几乎在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]上每点,[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]之一切导出数都不是负的,而 [tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]至 少有一个导出数取[tex=1.786x1.071]ffZT3HtkPSdNVmi3u4ww7w==[/tex]的点之全体至多是可列的,那末[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex] 是一增加函数.
- 设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是可测集[tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]上的可测函数,[tex=3.214x1.214]n/FWacfElP9kz2kQ9RVIgQ==[/tex]可测,则[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]也是[tex=1.143x1.214]T4nTAteHkBqm9ExuFPG05A==[/tex]上的可测函数。