举一反三
- 求 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]的最大公因式:[tex=14.786x1.5]eWWYJXOYb+dlQxXoDoNn2SYAIHe7vmLeLsDaQsvCiMXRVe3wfhBEKXbqsY7VY4np[/tex]
- 设 [tex=16.357x1.5]kr7k0KBPUeONeZwTW+894khfetYN31lKq1nVLp8hE2dcnyvRVQtizVN+TeVGKedy[/tex](1) 求[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 除 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的商 [tex=1.857x1.357]9+kIsKaWTXKIfcjZp3srqA==[/tex]和余式 [tex=2.143x1.357]u0kLHrRFHKwKpOrb+U7MSA==[/tex](2) 求首项系数为 1 的最大公因式 [tex=5.214x1.357]ULfD42YUHpUMzAJu7WPRDKu5//4FSSF/xXyTUDWUUQw=[/tex](3) 求多项式 [tex=4.071x1.357]jxvhZiY+yy3z8BpZfEQInA==[/tex] 使[tex=13.929x1.357]Wh/7jOZlE0fZtGn7AMNHm89Nhtbm+DWd6RzkJ1+fXVGFMF0xdqviYq0jE8QpoFCF[/tex]
- 证明: 在 [tex=2.0x1.357]beH6DnGK6LEsYI2cIHxhuQ==[/tex] 中, 如果 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的倍式和, 并且 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一 个公因式, 则 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一个最大公因式.
- 已知[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]为偶函数,[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]为奇函数,且[tex=8.857x1.357]J70c06NcKSuavVueJFA+2JxXMulFojgPT0TTO8QgrTU=[/tex],试求[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]、[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]。
- 证明: 如果 [tex=8.714x1.357]q1zLG7InaoWF4DZWGqVkvpL1XoEKv/ZHCRM4RPRje54=[/tex] 且 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 为 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一个组合, 那么 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]的一个最大公因式.
内容
- 0
设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是次数大于令的多项式, 求证: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 等于某个不可约多项式 的幂的充要条件是: 对任意非常数多项式 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex], 或者 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 和 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 互素, 或者 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 可以整除 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的某个幂.
- 1
求多项式[tex=1.929x1.357]qtItT2nSs9gJhyd/XUewoA==[/tex]与[tex=1.857x1.357]HPAY/8lZdPTeVaC829Iu0A==[/tex],使得[tex=10.857x1.357]goysNU0bxWSUXJzgE3jjR8RUz5lHAT4A9BUBlPX15Jc=[/tex],[tex=1.929x1.357]cY572O/iQb24RFJ/GJrTow==[/tex]是多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]与[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]的最大公因式,[tex=9.857x1.5]9lBOqsVx8jRkhUTJDDYUuxpjmIhwV/CHtemDUucFZfc=[/tex],[tex=6.643x1.5]F5ZA02DDOySSAGfdYNNn1g==[/tex]。
- 2
用 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 除 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex], 求 [tex=15.571x1.5]pZTL2AjXmFS4UBvda81d61BBehHgUIWQGu2zR5nrQMQggHi83cGPizAoEFuJKu1U[/tex] 商式与余式.
- 3
求多项式[tex=1.929x1.357]qtItT2nSs9gJhyd/XUewoA==[/tex]与[tex=1.857x1.357]HPAY/8lZdPTeVaC829Iu0A==[/tex],使得[tex=10.857x1.357]goysNU0bxWSUXJzgE3jjR8RUz5lHAT4A9BUBlPX15Jc=[/tex],[tex=1.929x1.357]cY572O/iQb24RFJ/GJrTow==[/tex]是多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]与[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]的最大公因式,[tex=11.571x1.5]/aSXGCwVlv2Cp56C/P2kFPuSRYF1mEWI14XublbdAB6qhIm+sV6/n5yiV1D+01hf[/tex],[tex=6.214x1.5]HmSEFmtll3Kr2APMHt7E/g==[/tex]。
- 4
设[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]和 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]均为周期函数, [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的周期为 [tex=2.786x1.357]MrzotaiiJe2z5/ee6fNhaA==[/tex] 的周期为 3, 问[tex=5.786x1.357]7/1O6t1UW+GTmZRKeWOeIfBbG3X1mAHE8/22XDJDf/4=[/tex][tex=3.714x1.357]AXo/bl8buP2bvL9y5r/yDQ==[/tex] 是否是周期函数,若是,求出它们的周期.