设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的一个线性变换. 证明: 如果 [tex=7.714x1.357]Hy12kln5BWS6e/nYifqIO/MSAAIvZDzHo2Dmkm4Xohh+VhyIGmOJYdo4O4dthkqDWTDR08DSVglZkbGWYr+Lgg==[/tex] 则 [tex=3.857x1.357]fkYeizFVWvHVWBazq51W8CdeU38AOw9+uWsvQC06yI0=[/tex] 这里 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一个最大公因式.
举一反三
- 证明: 在 [tex=2.0x1.357]beH6DnGK6LEsYI2cIHxhuQ==[/tex] 中, 如果 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的倍式和, 并且 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一 个公因式, 则 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一个最大公因式.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 维线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的一个线性变换. 证明: 在 [tex=1.786x1.357]2pFrMmryE2cRTmNCb4YNBA==[/tex] 中存在一个次数 [tex=2.071x1.357]7chhhwfJwqwEvXCvQhaPf/NbmqM5/uxZjnHdLFf2I/U=[/tex] 的非零多项式 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 使得 [tex=3.714x1.357]619NWWixKPCSw5gBvKf3BFy7dL1orFzl95yMux+ODsw=[/tex]
- 证明: 如果 [tex=8.714x1.357]q1zLG7InaoWF4DZWGqVkvpL1XoEKv/ZHCRM4RPRje54=[/tex] 且 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 为 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的一个组合, 那么 [tex=1.929x1.357]aMCa7j968L/hYU5HJBvp5g==[/tex] 是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]的一个最大公因式.
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的一个线性空间, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的一个线性变换. 证明: 如果 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的幂等变换, 则 [tex=7.429x1.214]9EEqBINFlBjBDctgmBR710iQzzjdHLq0qFl5D2J7LoJfKUhIUE/hne1q9q9IngGOMdMLoA+ggeiu2E4r1hRMtA==[/tex] 并且 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是平行于 [tex=2.571x1.0]7sm0+A17+tx/lVOuO5S85JZirYSY+u4Jmoo206BMmy8=[/tex] 在 [tex=2.143x1.0]Hxr+WAd0pdX8wRxoSXYGR4QAnDyuqv4xTysdYL2/0eA=[/tex] 上的投影.
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上任意一个线性空间 (可以是无限维的), [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上的一个线性变换. 证 明: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的属于不同特征值的特征向量是线性无关的.