一细长杆,[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]端固定,[tex=1.714x1.0]OFSQaAQTidbnVE7HphlqPw==[/tex]端受周期力[tex=3.357x1.0]1GUhjN+YxHeRHQeqD4ARmiIX3uKXu1GpTRb4jsOBnNA=[/tex]作用.设初位移和初速度均为 0,求解此杆的纵振动问题.
举一反三
- 求解均匀细杆的导热问题,设杆的侧面是绝热的,初始温度为零,[tex=1.714x1.0]OFSQaAQTidbnVE7HphlqPw==[/tex]端保持为零度而另一端[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]的温度为[tex=1.143x1.0]yYwm/CsnEsivP43lVC9u9Q==[/tex]([tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为常数).
- 长为[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex]的杆,侧面和[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]端绝热,另一端[tex=1.714x1.0]OFSQaAQTidbnVE7HphlqPw==[/tex]与外界按Newton冷却定律交换热量(设外界温度为0),初始时刻杆内温度为常数[tex=0.929x1.0]M6rCjWOyyOXOB1PmbinM2A==[/tex],求杆内温度分布.
- 一长为[tex=0.357x1.0]Le5Jr6QhXJv1Yp4NjrbGVA==[/tex] 、横截面积为[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的均匀弹性细杆,已知[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]的一端固定,在[tex=1.714x1.0]OFSQaAQTidbnVE7HphlqPw==[/tex]的一端在杆轴方向上受拉力[tex=0.857x1.0]WBOxEEx6dPfNM3eGriw9WQ==[/tex]作用而平衡,在[tex=1.643x1.0]MVeOYouc7e3FvU1m5bCV6w==[/tex]时撤去外力,并忽略重力的作用,试列出杆的纵振动所满足的方程、边界条件和初始条件.
- 写出弦的横振动问题在下列情况下的初始条件:弦的两端点[tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]和[tex=1.714x1.0]OFSQaAQTidbnVE7HphlqPw==[/tex]固定,用手将弦上的点[tex=7.643x1.357]GU2la7DF1Ucu2jrntZ7CiOitnmMoWmBbkrcYdYHDI8Q=[/tex]拉开使之与平衡位置偏离[tex=0.643x1.0]uPu/UBwxTDghY6MHYDLmcA==[/tex](设[tex=2.5x1.071]g26D1stzaus10xjhmccClA==[/tex]),然后放手.
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处可导,在什么情况下, [tex=2.429x1.357]HahJs8lvA4tV0CFg1fYnxw==[/tex] 在 [tex=1.857x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处也可导?