如果随机变量X存在二阶原点矩,则下列表达式正确的是( ).
A: E( X 2 ) < [E( X )]2
B: E( X 2 ) ³ [E( X )]2
C: E( X 2 ) ³ [E( X )]
D: E( X 2 ) < [E( X )]
A: E( X 2 ) < [E( X )]2
B: E( X 2 ) ³ [E( X )]2
C: E( X 2 ) ³ [E( X )]
D: E( X 2 ) < [E( X )]
举一反三
- 如果随机变量X存在二阶原点矩,则下列表达式正确的是( ). A: E( X 2 ) < [E( X )]2 B: E( X 2 ) ³ [E( X )]2 C: E( X 2 ) ³ [E( X )] D: E( X 2 ) < [E( X )]
- 已知\( y = {x^2}{e^{ - x}} \),则\( y'' \)为( ). A: \( 2{e^{ - x}} - 4x{e^{ - x}} - {x^2}{e^{ - x}} \) B: \( 2{e^{ - x}} - 4x{e^{ - x}} + {x^2}{e^{ - x}} \) C: 0 D: \( 2{e^{ - x}} - 4x{e^{ - x}} \)
- 设二维随机变量 (X , Y )服从二维正态分布,则随机变量X + Y与X – Y不相关的充要条件为( ) A: E (X ) = E (Y ) B: E (X 2) – [E (X )]2 = E (Y 2 ) – [E (Y )]2 C: E (X 2 ) = E (Y 2) D: E (X 2) + [E (X )]2 = E (Y 2 ) + [E (Y )]2
- 函数 $y=e^ x - 2^x$的导数 A: $e^ x - 2^x $ B: $e^ x - 2^{x-1} $ C: $e^ {x-1} - 2^{x-1} $ D: $e^ x - 2^x \ln 2 $
- 下列不等式正确的是( ) A: \( { { {e^x} + {e^y}} \over 2} < {e^ { { {x + y} \over 2}}}\quad (x \ne y)\) B: \((x + y){e^{x + y}} < x{e^{2x}} + y{e^{2y}}\quad (x > 0,y > 0,x \ne y)\) C: \( { { {x^n} + {y^n}} \over 2} < {( { { x + y} \over 2})^n}\quad (x > 0,y > 0,x \ne y,n > 1)\) D: \(x\ln x + y\ln y < (x + y)ln { { x + y} \over 2}\quad (x > 0,y > 0,x \ne y)\)