设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是一个 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次多项式, 若 [tex=5.857x1.214]ozdy65cPHMQ591Py7rskdTarH+8DN8uJ5h1lSg+Y5lc=[/tex] 时有 [tex=4.786x2.5]VMi0WJGd3PH3PYSAAXJXQokHoKC3f5SWo43R6+KqGH0=[/tex], 求 [tex=3.214x1.357]5/fOSTUu0pIT54770SVryg==[/tex].
举一反三
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次有理系数多项式, 若 [tex=2.5x1.071]UmcDBu0nDM7wGDdKxgvEEg==[/tex], 求证: [tex=1.429x1.429]CHT4LSgbMdocanZXSUSLsA==[/tex] 必不是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 的根.
- 证明: [tex=2.0x1.357]bhIid+utCyrxmES94DkZ5Q==[/tex] 中一个 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次 [tex=3.214x1.357]3v8oITlFKdpOMseWKj2iV4GAQRAhLzmH+sXlhlPYXOU=[/tex] 多项式 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 能被它的导数整除的充分必要条件是它与一个一次因式的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次幂相伴.
- 对 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的不同值,分别求出循环群[tex=1.143x1.214]StMMJ6qThnpokZJIPGrdFyP3vrLnUdltYxmLxjw8za8=[/tex]的所有生成元和所有子群。(1) 7; (2) 8; (3)10 ;(4) 14 ; (5) 15 (6) 18 。
- 证明:若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是次数不超过[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的多项式.那么任取[tex=1.929x1.143]aJigoMJPQig1KIbQpW0DPw==[/tex]个实数为节点所作的[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次插值多项式就一定是[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]自身。解 :[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的插值余项为[tex=4.0x2.857]sBGcD6eb/mvXEdlHgH5JP/vtxEweixnGs1M0hXAdXZA=[/tex],为零
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。