举一反三
- 证明[tex=2.929x1.357]EFs16bQITUnB7Op2XBHJF8j7RwO/JXmROs9DU0GNEvo=[/tex] 的最佳一致逼近[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]次多项式就是[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上的某个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]次拉格朗日插值多项式。
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是一个 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次多项式, 若 [tex=5.857x1.214]ozdy65cPHMQ591Py7rskdTarH+8DN8uJ5h1lSg+Y5lc=[/tex] 时有 [tex=4.786x2.5]VMi0WJGd3PH3PYSAAXJXQokHoKC3f5SWo43R6+KqGH0=[/tex], 求 [tex=3.214x1.357]5/fOSTUu0pIT54770SVryg==[/tex].
- 证明: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]次最佳一致逼近多项式也是它的插值多项式.
- 证明:若[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]是次数不超过[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的多项式.那么任取[tex=1.929x1.143]aJigoMJPQig1KIbQpW0DPw==[/tex]个实数为节点所作的[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次插值多项式就一定是[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]自身。解 :[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]的插值余项为[tex=4.0x2.857]sBGcD6eb/mvXEdlHgH5JP/vtxEweixnGs1M0hXAdXZA=[/tex],为零
- 设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]是一个偶数,试证每个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶群都是幂零群的充分必要条件是[tex=2.286x1.214]eODeiSeb3AImTXhrlrErlw==[/tex],[tex=2.0x1.071]/9E9Zuw0gy0gp8mzmez1/Q==[/tex]。
内容
- 0
证明:数域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上的一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]次多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]能被它的导数整除的充分且必要条件是[tex=5.786x1.857]rvxDb4yZzzZueL5VRhZswR53HJzzePuFezIHz054AIA=[/tex],这里[tex=0.571x0.786]7G1MINzwputr5mgALyjQfA==[/tex],[tex=0.429x1.0]dX3JVuFw9r8t2KlWf+/Z+A==[/tex]是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]中的数.
- 1
证明:数域[tex=0.643x1.0]Ft8KOBgb78fnKY0jEt4Rsg==[/tex]上一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 次[tex=3.214x1.357]gJkFLWVH5zNk75r8/evhfA==[/tex]多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]能被它的导数f(x)整除的充要条件是[tex=7.214x1.357]lmeBkU8/ruK6t5RxRgcerg==[/tex],其中[tex=3.286x1.214]oeWZ4kdc5N+8h2+UwE9GFw==[/tex].
- 2
[tex=1.786x1.357]d5PlggfPq7IWhxnCFu/8ng==[/tex] 中的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次多项式 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]中最多有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个不同的根.于是 [tex=8.643x1.357]a5eM7c+YtekTg+IjO3NtkpQxt4Uzx3VSJn2p2b19dC84J7eG+LzJPJtZ2SlxsKT4[/tex]在 [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 中若有多于[tex=1.929x1.143]aJigoMJPQig1KIbQpW0DPw==[/tex] 个根,必是零多项式.
- 3
设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次有理系数多项式, 若 [tex=2.5x1.071]UmcDBu0nDM7wGDdKxgvEEg==[/tex], 求证: [tex=1.429x1.429]CHT4LSgbMdocanZXSUSLsA==[/tex] 必不是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 的根.
- 4
证明,设正整数[tex=3.0x1.143]y9waEgZ1sBnU9mr8lb4z6Q==[/tex],并且[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]次整系数多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]的[tex=3.571x2.214]t52cQAsFAmSV6XlZMXYYyMhzZEX31fySn77CO0Ut4WU=[/tex]个以上的整数值上取值为[tex=1.286x1.143]tkm29yuKKtwOsgBeQx8hOw==[/tex],则[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=0.786x1.214]qWTwUSIEBK1EwCOmwQzggg==[/tex]不可约。次数[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]的下界12是否还可缩小?