• 2022-07-23
    若[tex=5.286x1.929]ENxIatiC2yqgaopSQCG83qTSCwGpzEBbGMh8tQiUtQK5g1xXt5jMgx2MKAzD+kSs[/tex],[tex=5.286x1.929]MhC0sa4kP8ihnFHLNuEHS/fJpad05KUCl3gkMYwx3jwKqvv+FOPcmSnBhMnuM8JF[/tex],并且存在[tex=2.286x1.071]X+2eW6IhkPknBwSlAw9fFQ==[/tex],当[tex=6.5x1.357]oY1cES/mcDTAWgtjlXTFeypcK+pYYxQ4Ipx6t1pwU40=[/tex]时,有[tex=5.0x1.357]VkAf+7dPgAsudsASsRrclPY+RcffFw/x5qX3E7NgWOQ=[/tex],证明[tex=2.857x1.143]WndPKxjC41JXoApOvFNpyw==[/tex].又若当[tex=6.5x1.357]0U7wlXvqe+upcqBOD1dAKVZaVeDaRUdMlKHtMnbOIyDtonE/0RQZBeeklfJhNL+O[/tex]s时[tex=5.0x1.357]fAtIM1Zhdi0VF2ZYm+91kg==[/tex],是否一定成立[tex=2.857x1.071]P6U1mfYHGQvczKyT9ku48w==[/tex]
  • 用反证法。假设[tex=2.857x1.071]/WU0NhL5qKCfdXztD9OBVg==[/tex],则由[tex=5.286x1.929]MhC0sa4kP8ihnFHLNuEHS+KxjXIU6jWrgEM2eQB04CQoLy2iA3bIYrgXRTQijFi2[/tex],[tex=5.286x1.929]MhC0sa4kP8ihnFHLNuEHS/fJpad05KUCl3gkMYwx3jwKqvv+FOPcmSnBhMnuM8JF[/tex]及性质1,得[tex=3.214x1.214]zlKeabRmX2Dxj8dDdgdiwIFsuAtZlpX4ZODdWt7IzII=[/tex],使当[tex=6.857x1.357]FPVoynMy8FsiHnXLyIw1DkL1w4B4hpDqqiMyLsQp2MX8yKAn5nTTRCdKFmZRUYLu[/tex]时,有[tex=5.0x1.357]p5rRW2FHtjF6Y1vE8jsXuQ==[/tex]。这与已知:[tex=2.286x1.071]4gL6Uwx3bB6EvZDTF1jUkPVKEyhmX74eY+gkanIWY2k=[/tex],当[tex=6.5x1.357]oY1cES/mcDTAWgtjlXTFeypcK+pYYxQ4Ipx6t1pwU40=[/tex]时,有[tex=5.0x1.357]VkAf+7dPgAsudsASsRrclOosA8HugelqWxLOeOQCzCQ=[/tex]矛盾,故假设不成立,即[tex=3.214x1.143]QDQbJrEStBHsnMi6FOP66Uwd2df6zB6PsDH5XaLy6Jk=[/tex]成立。不一定,例:(i)成立。[tex=7.857x2.643]8vHvEVv5swFyo/d+gaD4pqOQqzjVsuWR4OLCGJuC++dJ/aJ/WOyJnsSXoFIOaD8h[/tex],[tex=6.786x1.5]oZUdqhyA2Q7DXi5jjgH4fIGl+opnsP4uFcD5iTgWds0=[/tex],[tex=2.286x1.071]VaATl+ui/tWLtUZWXNeloSQGmN20z3qwF42J7oGQsNs=[/tex],当[tex=4.786x1.357]LgRskrjwzHJf1fJW7GrgUw==[/tex]时,[tex=5.0x1.357]3NMdzeXf/5obiPPvGPvzdQ==[/tex]。又[tex=6.786x1.929]a7NMXwreO8QyU788OBvinUsKjKWJ747LCYbNd7ZNOGsMQXw1SRQCC+/mQIN3RWUf[/tex],[tex=6.786x1.929]Y1QbVYl2oDEd8EE96UF7HS8ynkUqddOyPChoMKxHLqVEx3o1SOnETUvl6mnTZVSg[/tex],故[tex=2.857x1.071]P6U1mfYHGQvczKyT9ku48w==[/tex]成立。(ii)不成立。[tex=6.286x2.5]kjZcK5x5SU03iY70SMQ4dnoograWJqlfdODbv4Rno6rurdA+/VAVmlGkYS2hUMwf[/tex],[tex=6.286x1.5]YfuYXHU/ufeLtcUQSZTDLfmB/rQTJtwla7G9sVdYAfw=[/tex],[tex=2.286x1.071]VaATl+ui/tWLtUZWXNeloSQGmN20z3qwF42J7oGQsNs=[/tex],当[tex=4.786x1.357]LgRskrjwzHJf1fJW7GrgUw==[/tex]时,有[tex=5.0x1.357]3NMdzeXf/5obiPPvGPvzdQ==[/tex]。[tex=5.071x1.929]ENxIatiC2yqgaopSQCG83qTSCwGpzEBbGMh8tQiUtQIOlleWi4rP/0JjeZh3WMbA[/tex],[tex=6.786x1.929]Y1QbVYl2oDEd8EE96UF7HS8ynkUqddOyPChoMKxHLqVEx3o1SOnETUvl6mnTZVSg[/tex],故有[tex=2.286x1.0]F758SQvBxtzhI5jiwCObbQ==[/tex]。

    举一反三

    内容

    • 0

      某人对商品x的需求函数是[tex=5.214x1.214]0m6eBd5eyK0NjuxeKfwtIw==[/tex],[tex=4.214x1.214]I717YsPbj8Rnym1v2XQ+sFNkUl7mqUsGwbjwjXmy2xc=[/tex],这里[tex=0.571x1.0]Za328cIB4SeR7rrzY+MM5Q==[/tex]是[tex=0.571x0.786]ZSLOI4fiO1oAbVC5M8IVkA==[/tex]的价格。如果商品x 的价格是0.5元,那么他对商品x的需求价格弹性是 未知类型:{'options': ['-10', '- 1/5', '-1/10', '\xa0- 1/3'], 'type': 102}

    • 1

      对于以下两种情形:(1)x为自变量,(2)x为中间变量,求函数[tex=2.214x1.214]sy9gaFRMGlrH59gm9bWSDg==[/tex]的[tex=1.5x1.429]5W5tOYbJ+LlsRP2dMsi4byxwtjvvL/3u7NEzPV5PWp0=[/tex]

    • 2

      求下列函数的导函数:(1) [tex=5.0x2.357]X/CieCDGJ7iPQ3YFWuscHxHrcIE/dPFa9tFyiJXze8A=[/tex](2)[tex=6.643x1.714]Oj74y/L+OxY81QME5JWMcl+7PZ2FGQswwvjgVhjq1Dmb6dBU0oAjZBW7eFBVjqo6[/tex]

    • 3

      求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?

    • 4

      设抛物线[tex=7.5x1.429]PuOOiuXliw3SbXOlC3PxEg==[/tex]与x轴有两个交点x=a,x=b(a<b).函数f在&#91;a,b&#93;上二阶可导,f(a)=f(b)=0,并且曲线y=f(x)与[tex=7.5x1.429]PuOOiuXliw3SbXOlC3PxEg==[/tex]在(a,b)内有一个交点.证明:存在[tex=3.286x1.357]EV4pc+LBkNBOhd4NZUA5NQ==[/tex],使得[tex=4.357x1.429]/FYTUVhgTPYa3RqQR+bSSXpHSralD3pTYi2H35Z8qsw=[/tex].