证明 [tex=4.714x1.143]2D9plpuZLil62r5RSp12pw==[/tex] 当且仅当[tex=3.071x1.214]Kl+mn1OI6PICS3KqOJAQfg==[/tex]
举一反三
- 设 [tex=5.571x1.214]eJy7VhH65VRts6bfN/wW0qSLr6tx3UnjbIVZOYmgwsesZVe3LfON1m5XC/ZWRrMkgjy0XGvwUDiz8worWVhiiA==[/tex] 且 [tex=6.0x1.429]VfJMl/JRDhUg4N/j0auYnx91sJmE1DpqMHmFSN4UNcv1AaUPUDKP71ackj4WfGz6cmsXyPO/7LbhB5qW3HMOIQ==[/tex] 证明1) [tex=5.0x1.357]PF4+0fQrOtrBMOGLTbiojWHD9HeQmUzzlH8ydOx6ZwA=[/tex] 当且仅当 [tex=6.714x1.214]t4fgzvN247twKwYp+jekqaSM2F1I59tfyLmarSTXF4jE9lVv1R3jnvrDqwnb09fgUQmV/i9jvGb1VP+NNe+qqJa017u08tzfXp2iJTfc89g=[/tex]2) [tex=5.429x1.0]bm3Mth7dIBkvW5h/YcCTdo75g2LQal/3MslYLuzIX7ljVLOMmokJVQ3pqIFz3ScpDLxYC3YRlx9OGboSSdFkPA==[/tex] 当且仅当 [tex=6.429x1.214]t4fgzvN247twKwYp+jekqd5tQX6Ir1tVtuMZ4EYdcuM175TWc9SLTF5enyW9KACLFLU5unY24y0o6hpa7IDat+mjWrcIYnd8nNNZzeFfjL8=[/tex].
- 设 [tex=4.0x1.214]gqm0mWUCKdOARf086AW0480jEQ3Xm81NfZLfINt8SrF3Bc8hkj34rbCcz4E0io/L[/tex] 试证1) [tex=2.571x1.143]WdbVvotJqaIEmmV0vNMW+jEQ83lsj5/Yim9TL3pJrZU=[/tex] 当且仅当 [tex=4.286x1.143]80Wj0uAKV+7pqHZEfv32mPI23ILOBLq3IKynnNCFOURqLDiirzP1JdUlbdFmI9kX[/tex], 且 [tex=0.786x1.0]PutU1cWdyHyySBp7YfCWhQ==[/tex] 的特征根都是实数;2) [tex=3.286x1.286]V5aIETDsYc6y76PNWXSA4NaDDrtbuCAhe1mIrkwO9SM=[/tex] 当且仅当 [tex=4.286x1.143]80Wj0uAKV+7pqHZEfv32mPI23ILOBLq3IKynnNCFOURqLDiirzP1JdUlbdFmI9kX[/tex], 且 [tex=0.786x1.0]PutU1cWdyHyySBp7YfCWhQ==[/tex] 的特征根都是纯虚数;3) [tex=3.5x1.214]kePI5SUwTOUcyZnmRV2Ep1OrfmgdKBaQ/84vMQv9BMA=[/tex] 当且仅当 [tex=4.286x1.143]80Wj0uAKV+7pqHZEfv32mPI23ILOBLq3IKynnNCFOURqLDiirzP1JdUlbdFmI9kX[/tex], 且 [tex=0.786x1.0]PutU1cWdyHyySBp7YfCWhQ==[/tex] 的特征根的模为 1 .
- 证明: [tex=5.429x1.5]fcpmF+EAIofbZCQXocjgXt/mco5W+CCqKwoybXb4KPE=[/tex] 当且仅当 [tex=2.286x1.357]j3lu04V68mvhuKN1rKDv8w==[/tex]
- 如果[tex=5.714x2.357]Ny73H6lkUdS1wI7bgZiCBxa6YduCBzyLphWVxptUc+w=[/tex],证明:[tex=2.714x1.214]dcnOFWnX7qacqp9qPibD9A==[/tex]当且仅当 [tex=2.714x1.214]HYYjMOOtkUPi917F1pGpoA==[/tex] .
- 如果[tex=5.714x2.357]Ny73H6lkUdS1wI7bgZiCBxa6YduCBzyLphWVxptUc+w=[/tex],证明:[tex=2.714x1.214]9mbfwsgne4OGiaqDSA0rWg==[/tex]当且仅当[tex=2.714x1.214]hY6Gq3qBKa28RH9fgumHjg==[/tex].