求解微分方程[img=203x35]17e443a63e2e7ec.png[/img]的通解的命令为:
A: dsolve('(x^2-1)*Dy+2*x*y-sin(x)=0', 'x')
B: dsolve('(x^2-1)*Dy+2*x*y-sin(x)=0')
C: dsolve('(x^2-1)*Dy+2*x*y-sin(x)=0', 't')
D: dsolve('(x^2-1)*Dy+2*x*y-sin(x)=0', 'y')
A: dsolve('(x^2-1)*Dy+2*x*y-sin(x)=0', 'x')
B: dsolve('(x^2-1)*Dy+2*x*y-sin(x)=0')
C: dsolve('(x^2-1)*Dy+2*x*y-sin(x)=0', 't')
D: dsolve('(x^2-1)*Dy+2*x*y-sin(x)=0', 'y')
举一反三
- 求微分方程[img=101x35]17da5f15503f795.png[/img] 的通解,实验命令为(). A: dsolve(Dy+2*x*y=x*exp(-x^2))ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2 B: dsolve('Dy+2*x*y=x*exp(-x^2)','x')ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2 C: dsolve('Dy+2*x*y=x*exp(-x^2)')ans=C1*exp(-x^2) + (x^2*exp(-x^2))/2
- 求微分方程[img=143x21]17da5f14490e50e.png[/img]的通解,实验命令为(). A: dsolve(D2y-2*Dy+5*y=sin(2*x),x)ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x) B: dsolve('D2y-2*Dy+5*y=sin(2*x)','x')ans =cos(2*x)*(sin(4*x)/17 - cos(4*x)/68 + 1/4) - sin(2*x)*(cos(4*x)/17 + sin(4*x)/68) + C1*cos(2*x)*exp(x) - C2*sin(2*x)*exp(x) C: dsolve(D2y-2*Dy+5*y=sin(2*x),'x','y')ans =exp(x)*sin(2*x)*C2+exp(x)*cos(2*x)*C1+1/17*sin(2*x)+4/17*cos(2*x)
- 求解常微分方程初值问题[img=224x61]1803072f6b2a05a.png[/img]应用的语句是 A: DSolve[2y[x]y"[x]==1+(y'[x])^2,y[0]==1,y'[0]==0,y[x],x B: DSolve[{2y[x]y" [x]==1+(y'[x])^2,y[0]==1,y'[0]==0},y[x],x] C: DSolve[{2y[x]y" [x]==1+(y^' [x])^2;y[0]==1;y'[0]==0},y[x],x] D: DSolve[{2yy"==1+(y^' )^2&&y[0]==1&&y'[0]==0},y[x],x]
- 下列方程中( )是一阶线性微分方程。 A: \( 2{x^2}yy' = {y^2} + 1 \) B: \( xy' + {y \over x} - x = 0 \) C: \( \cos y + x\sin y { { dy} \over {dx}} = 0 \) D: \( y'' + xy' = 4{x^2} + 1 \)
- MATLAB 中 dsolve 命令求解微分方程 y'+exy=1 时的正确格式为( )。 A: dsolve('Dy=1-exp(xy)','x') B: dsolve('Dy=1-exp(x*y)','x') C: dsolve('Du=1-exp(x*y)', 'x') D: dsolve(Dy=1-exp(x*y), 'x')