设[tex=5.286x1.214]quOPtqfuRj8ozrQ+uV1MYv8JMGscBLYNG65/rG13OxY=[/tex]是线性空间[tex=0.643x1.0]H4OBEtaFUUM3k47UOjlnFw==[/tex]的 [tex=0.5x0.786]91OkLAPJN0/k5IKcIh4ulA==[/tex]个非平凡的子空间,证明[tex=0.643x1.0]H4OBEtaFUUM3k47UOjlnFw==[/tex]中至少有一向量[tex=0.643x0.786]jdK/fyT0DcQyP00+kAkt9w==[/tex]不属于[tex=5.286x1.214]quOPtqfuRj8ozrQ+uV1MYv8JMGscBLYNG65/rG13OxY=[/tex] 中的任何一个。
举一反三
- 设 [tex=5.714x1.214]lZfcRDOHT43TyAqQoLZlW8UiH0GFLj08pVPZaN1Dbiw=[/tex]是线性空间 [tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex] 的 [tex=0.5x0.786]ICKY+F5VdoSQrRn/wUUOyw==[/tex] 个非平凡的子空间,证明 : [tex=0.643x1.0]SW0o8G0GHsmLXldwnq7xKg==[/tex] 中至少有一向量不属于[tex=5.357x1.214]lZfcRDOHT43TyAqQoLZlW6NOFio2Pds294Bv4ocg9JA=[/tex]中任何一个.
- 设[tex=0.786x1.0]3akNjptD8YqOes80TdtIxQ==[/tex]是有限维线性空间[tex=0.643x1.0]H4OBEtaFUUM3k47UOjlnFw==[/tex]的线性变换, [tex=1.0x1.0]TtmWXcLbY6Xavx7AB3bPBQ==[/tex]是[tex=0.643x1.0]H4OBEtaFUUM3k47UOjlnFw==[/tex]的子空间. [tex=1.714x1.0]fXuO2AclCgGL3vHwZt70zQ==[/tex]表示由 [tex=1.0x1.0]TtmWXcLbY6Xavx7AB3bPBQ==[/tex]中向量的像组成的子空间,证明:[tex=17.214x1.5]uwohNXPFGlkxdzXDSIlN+vObZZZTFZ18+SK3dzn6af985LYG5plTzLaejYhewYXgm+J8bNrtjiG1P26PpM0lmohggsePBGV9dn6uisQsCOjPHFz4+twQi8d48aAmphJ+XkmLpuz36IyWUeJXmaDQnQ==[/tex]
- 2. 设[tex=0.643x1.0]H4OBEtaFUUM3k47UOjlnFw==[/tex]是数域[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]上维线性空间,证明:由[tex=0.643x1.0]H4OBEtaFUUM3k47UOjlnFw==[/tex]的全体变换组成的线性空间是[tex=1.0x1.143]8bfC0zh8xjaCXrxoE5J87w==[/tex]维的.
- 令[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是数域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上向量空间[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一些线性变换所成的集合。[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个子空间[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]如果在[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]中每一线性变换之下不变,那么就说 [tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]是[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的一个不变子空间。说[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]是不可约的,如果[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]在[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]中没有非平凡的不变子空间。设[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]不可约,而[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]是[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个线性变换,它与[tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]中每一线性变换可交换。证明,[tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex]或者是零变换,或者是可逆变换。 [ 提示 : 令 [tex=5.0x1.357]o2+7Gdi3IvIUF7x5ByZZytJ/TK5JsUQ7dq1ESJYAz0s=[/tex],证明[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]是 [tex=0.643x1.0]jLbabU9pW65GUKemsNBJWw==[/tex]的一个不变子空间。
- 设[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]维向量空间[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]的一个子空间,且 [tex=6.571x1.071]ZyqBa4JfWRPKusGwA3PAKqa8sjPrakad+dZGuQBTVus=[/tex].证明:[tex=1.0x1.0]97Y4VMFIqE7cl6MEqnCpuw==[/tex]在[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]中有不止一个余子空间。