f(x)=[1-√1-x]/x,x≠0处处可导,求a=b=f(x)=ax+b,x≧0
举一反三
- 设函数$f(x)=x|x(x-2)|$, 则 A: $f(x)$在$x=0$处可导,在$x=2$处不可导 B: $f(x)$在$x=0$处不可导,在$x=2$处可导 C: $f(x)$在$x=0$和$x=2$处都可导 D: $f(x)$在$x=0$和$x=2$处都不可导
- 设f(x)在x=a处可导,则①|f(x)|在x=a处可导;②|f(x)|在x=a处连续;③f(x)f′(x)在x=a处连续;④[f(x)]2在x=a处可导四个命题中正确的有() A: ①②③ B: ②③ C: ①③④ D: ②④
- 设f(x)在点x=x0处可导,且f(xo+7△x)-f(xo)△x→1(△x→0),则f′(xo)=( ) A: 1 B: 0 C: 7 D: 17
- 设f(x)可导,F(x)=f(x)(1+|x|),若要使F(x)在x=0处可导,则必有______. A: f(0)=0 B: f(0)=1 C: f"(0)=0 D: f"(0)=1
- 函数y=f(x)在x=x。处取得极大值,则必有[]. A: f(x。)=0 B: f〞(x。)<0 C: fˊ(x。)=0且f〞(x。)<0 D: fˊ(x。)=0或fˊ(x。)不存在