设[tex=9.5x2.429]GorY+O2cauyts2hCVBXGStMsNriY/Xw9XwjbFQwherZswthiFrvuce9LqKUGYVfw[/tex]试确定[tex=1.429x1.214]HCTRLtzxkeBZo1HKwKR3/g==[/tex]的值,使[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]在[tex=2.429x1.0]YxEFKugBV3gg0vHD/sonJQ==[/tex]处可导。
举一反三
- 设[tex=10.857x3.357]w70lG1NUs5ZRhKHaXMaifahNYA2l55OVx/YI5vl5IU4W+F8o5MMv6U8wxMhInClyfyPB/lhM3ltGUlB4mVUBIGb/jWUpZJnTY/IhzfiZW+Gd0W0gQB9T9X6eIPSvHks5[/tex]试确定[tex=1.429x1.214]rkgrF+YaaESwSQDjR6KfWg==[/tex]之值,使[tex=0.5x1.214]gNOHIx2AGu3qP//Yn7oxrg==[/tex]在[tex=2.429x1.0]fQl1d6p2i9+ICO5cjxDO1A==[/tex]处可导。
- 若函数[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]在[tex=1.857x1.0]sQ8UKBTHa4u9aJQTaFsBAg==[/tex]处连续,且[tex=3.714x2.5]MhC0sa4kP8ihnFHLNuEHSyLjcLSXmoVfSIttL48sNz31PM5vq0CvRiy8OVakovv4[/tex]存在,证明:[tex=0.5x1.214]0K9Xf7VHWdVeOrSYAKIm6Q==[/tex]在[tex=1.857x1.0]sQ8UKBTHa4u9aJQTaFsBAg==[/tex]处可导。
- 设函数 [tex=12.786x4.071]ACpG7W/lXiEwdW69ASBj8/2YlnttL4SSB5wR8px8LpgUNzq7ycdc7SLe4a4gCUD/CbNsVRhRP/lHmPeVS16UtG9Khkwa+IYO4PoiXfjXGMw2WptZMt2fs9fNz+4jAOVOFkx4pUhmaNtVuSPhoF33Gg==[/tex],讨论在上面条件下,[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex](1) 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处连续;(2) 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处可导;(3) 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处导数连续?
- 设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是一元多项式,[tex=1.429x1.214]HCTRLtzxkeBZo1HKwKR3/g==[/tex]是任意数,[tex=0.5x0.786]EL0hSqs6jZBGdsmH7TMShQ==[/tex]是非零数,试证:1)[tex=9.071x1.357]YQBMD9AuWhXYc3lnwarsr2nfZ4nSbnsietXQyTV8dTsgUgpI0L+aorzpG8mwDZzA[/tex]是常数:2) [tex=13.357x1.357]a+BxhJtUaZmJTJc7xXT+jhaO1sQd9J7VvC2e3EZ9qD0CS0Pc/mXhUQVF99zvv1lG[/tex]([tex=0.571x1.0]CQkpoDeAAI+5FKIfe1wVCA==[/tex]为常数);3)[tex=12.0x1.357]81MyJ6DNp2pbGPQ3+N/8husLiUusoRoxUyCJ0T60q1YCiIh1uk0QHzLjaBnE9ZzH[/tex]或[tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex]
- 设f(x)在[0,a]上连续,在(0,a)内可导,且f(a)=0,证明至少存在一点[tex=3.643x1.357]lTsOOhJ85nTn3mrT2Mx0lw==[/tex]使[tex=6.286x1.429]JZ8spbP5y8lrG0FgeChLIS7LPAFOZNl0MwLjGUb1ZoE=[/tex]