举一反三
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处可导, [tex=9.357x1.357]+lfGytIskzQkbeHONSY90qHzeBnlKr3vYeswlVehj5c=[/tex], 讨论 [tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex] 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处可导的条件。
- 设[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]在[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处连续,求[tex=7.143x1.357]WBHzx45u9p6ikQbcvJXksk+/jCvyYca+kc9mrxy+h0o=[/tex]在[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处的导数[tex=2.143x1.429]cyTLS33m58hKP2tqKCic2g==[/tex] .
- [tex=4.786x1.643]DU0rUnWXsXr0JAG1m3XeaAn37ASrg2xrNPV3iioolmI=[/tex] 在[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处的导数为______,在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处取得极______值.
- 设函数 [tex=13.5x3.929]ACpG7W/lXiEwdW69ASBj86136FyqMZRO78PZ3PCO8oSFWXMZoOG98ThUjskM9Lx79HR1fdnVbB6bLQK/+X7gK+2PkJMB9Mpcpq4JxLAvNlRVXZ5Ih9oEACsNnHCi2dmeJE+ZmESRaj9+pZHLrmahmQ==[/tex] 则 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处[input=type:blank,size:4][/input]. A: 极限不存在 B: 极限存在但不连续 C: 连续但不可导 D: 可导
- 函数 [tex=5.071x1.357]pdIyXNUf1tp6cJv4SsZS3g==[/tex][input=type:blank,size:4][/input] 未知类型:{'options': ['在点\xa0[tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex]\xa0处连续可导', '在点\xa0[tex=1.857x1.0]fwov+ZzREJJP/GTCJbKvrw==[/tex]\xa0处不连续', '在点\xa0[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]\xa0处连续可导', '在点\xa0[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]\xa0处不连续'], 'type': 102}
内容
- 0
已知 [tex=12.714x3.357]ACpG7W/lXiEwdW69ASBj87jeEA8XqIbAizJYmgfHlgZfIyFHzRWvqRa4DHeduzMqC6krGm2BlxQB8ObdLtGjmO62kYluasG+cMaHp0lMX37UekPts1q+CB8JlTfSNgSE[/tex]在[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处连续, 则[tex=1.357x0.786]x63tkb0J8Tc2qHcomqp1vA==[/tex]______
- 1
设函数 [tex=12.071x2.429]EPaISH7F+7OFqeEao9lVbY9M+geAOkEejYuk2YpDRrOpQz9YTdPtPGqZt8DVR9ycU9GTKtdo3Jd2VZIC9SROX+rW6U9uRk7t3RjrabN8epo=[/tex] 应当怎样选择 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex],使得 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处连续.
- 2
求函数 [tex=14.571x1.286]vfiUEaLtDxpFY65qycnCU6pkSUKopthf6b4MjSzzF45Ybu7bFqfY+NqZN+YFGqQa[/tex] 在点 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处的导数.
- 3
求函数 [tex=14.571x1.286]lbb3szb4GTeuUvHEBF2dkwrbB6kmsVxAcCgWmuUIWx7qyaZEW8nS008vhEKhxdpH[/tex] 在点 [tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex] 处的导数.
- 4
设[tex=1.857x1.286]G6WxJ307HB2e1l7Qz3uNbQ==[/tex]为不恒等于零的奇函数,且[tex=2.071x1.286]T8enmFE6FpqF/84Xe69Oqt3rK6fHS1obY04zl8KG3jI=[/tex]存在,则函数[tex=5.214x2.071]wZbmuZxDmzmy5Dd7JF5cZ+JsTa4P0/UTm4D7/1mtwB0=[/tex] 未知类型:{'options': ['在[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处左极限不存在', '有跳跃间断点[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]', '在[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]处右极限不存在', '有可去间断点[tex=2.429x1.0]bOlCq/PHWhsSVMaVf7Obdg==[/tex]'], 'type': 102}