如图是函数Q(x)的图象的一部分,设函数f(x)=sinx,g(x)=1x,则Q(x)是( )
A: f(x)g(x)
B: f(x)g(x)
C: f(x)-g(x)
D: f(x)+g(x)
A: f(x)g(x)
B: f(x)g(x)
C: f(x)-g(x)
D: f(x)+g(x)
举一反三
- 设函数f(x),g(x)二次可导,满足函数方程f(x)g(x)=1,又f′(x)≠0,g′(x)≠0,则f″(x)/f′(x)-f′(x)/f(x)=g″(x)/g′(x)-g′(x)/g(x)。
- 设函数f(x),g(x)是大于零的可导函数,且f′(x)g(x)-f(x)g′(x)<0,则当a<x<b时有() A: f(x)g(b)>f(b)g(x) B: f(x)g(a)>f(a)g(x) C: f(x)g(x)>f(b)g(b) D: f(x)g(x)>f(a)g()
- 设函数f(x),g(x)是大于零的可导函数,且f'(x)g(x)-f(x)g'(x) A: f(x)g(b)>;f(b)g(x) B: f(x)g(a)>;f(a)g(x) C: f(x)g(x)>;f(a)g(a) D: f(x)g(x)>;f(b)g(b)
- 设f(x),g(x)是恒不为零的可导函数,且f’(x)g(x)-f(x)g’(x)>0,则当0<x<1时()。 A: f(x)g(x)>f(1)g(1) B: f(x)g(x)>f(0)g(0) C: f(x)g(1)<f(1)g(x) D: f(x)g(0)<f(0)g(x)
- 设f(x)=sinx,g(x)=cosx,则在[0,π/4]上有[]. A: f(x)≥g(x),fˊ(x)>gˊ(x) B: f(x)≥g(x),fˊ(x)<gˊ(x) C: F(X)≤g(x),fˊ(x)>gˊ(x) D: f(x)≤g(x),fˊ(x)<gˊ(x)