下列函数中既是奇函数又是单调递增的函数是
A: sin^3x
B: x^3+1
C: x^3+x
D: x^3−1
A: sin^3x
B: x^3+1
C: x^3+x
D: x^3−1
举一反三
- 设函数f(x)=(1/3)x^3+x^2-2ax(x∈R),当a
- 已知$f(x)={{x}^{3}},g(x)=|{{x}^{3}}|$,则$x=0$( )。 A: 既是函数$f(x)$的极值点,又是函数$g(x)$的拐点 B: 既是函数$f(x)$的极值点,又是函数$g(x)$的极值点 C: 既是函数$f(x)$的拐点,又是函数$g(x)$的拐点 D: 既是函数$f(x)$的拐点,又是函数$g(x)$的极值点
- 函数y=3x的反函数是() A: y=(1/3)x(x>0) B: -y=(1/3)x(x>0) C: y=log3x(x>0) D: -y=-log3x(x>0)
- 求方程组的解,取初值为(1,1,1)。[img=250x164]180333307ab8fde.jpg[/img] A: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fsolve(f,[1,1,1],optimset('Display','off')) B: x=fsolve(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1]) C: f=@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3];x=fzero(f,[1,1,1]) D: x=fzero(@(x) [x(1)^3+x(2)-x(3)-5; 2*x(1)+3*x(2)^2-6; x(1)+x(2)+x(3)-3],[1,1,1])
- 函数 $y=\sin^3x$ 的复合过程为 ( ). A: $ y=\sin u, u=x^3$ B: $y=u^3, u=\sin x$