举一反三
- 证明:设 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 是 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的代数元, [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的一个首一多项式, 则下列条件等价:(1) [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 在域 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的极小多项式;(2) [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 在 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上不可约, 且 [tex=3.429x1.357]+nzvPBU74mdetNBw41Ue1A==[/tex](3) [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上以 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 为根的次数取小的非零多项式;(4) 如果 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是域 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上任意一个以 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 为根的多项式, 则 [tex=4.857x1.357]+3zmuKty1AhSMDB3tNdbXzDDg/gxGAj+UD6ur3wtHjE=[/tex]
- 设[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex]是域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上首系数为[tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex]的多项式,且在某扩域中有根 [tex=0.929x0.786]ZAiG7AJu8kc6lTV9euHRkQ==[/tex]证明:若[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex]在[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上不可约,则[tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex]是[tex=0.643x0.786]hlJJ6/DUY+n2/FE6M2JdRA==[/tex]在[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上的最小多项式.
- 设[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]是正整数, 域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]的特征为零或与[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]互素. 则多项式[tex=4.786x1.357]m/z0dX/5ln/ylMUosE7OkOmOMx769B2z4pSMWxLEeyk=[/tex]在[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]中的根集[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶循环群, 其中[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]是[tex=2.357x1.143]S+IT4HHTaRyh3BoxjagfjA==[/tex]在[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上的分裂域的任一扩域.[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的生成元称为[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次本原单位根. 换言之, 当[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]的特征为零或与[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]互素, [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]的某一扩域含有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次本原单位根.
- 设[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]是一个域,证明:在域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上的一元多项式环[tex=1.786x1.357]DpXALeWBl8+QhoNGSoieqQ==[/tex]中,有带余除法。
- 设[tex=4.786x1.214]hSQMLcBhgNFENgN022zKCw==[/tex]是域[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上不可离元. 证明:[tex=1.071x1.0]d56LjdMUBXKbC4f6ujCFMQ==[/tex]也是[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上可离元.
内容
- 0
[tex=2.143x1.357]dWatJMLI7pN/xzYgReR9Ug==[/tex]中[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次首 1 不可约多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]称为[tex=2.143x1.357]dWatJMLI7pN/xzYgReR9Ug==[/tex]中的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次本原多项式, 如果[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的某一根[tex=0.643x0.786]cnVwa8IjZzNSEmAUXJ8VCQ==[/tex]是域[tex=2.357x1.357]0VK3/N/fLOoUyml49ohHEw==[/tex]的乘法循环群的生成元.求出[tex=0.643x0.786]cnVwa8IjZzNSEmAUXJ8VCQ==[/tex]在 4 元域上的极小多项式.
- 1
令[tex=3.857x1.357]TC8iySBI76q8j/ExOdYpjA==[/tex]是域. 证明:[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上多项式[tex=5.0x1.357]3HE/PBJzKz2DL2j0B7A9JS5FYZ4lXVBgrcb9WioyXCc=[/tex]在[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上不可约,但在其分裂域中有重根.
- 2
设[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]为[tex=0.5x1.0]jedlXyMYwmfVwxRj2j9sSw==[/tex]阶有限域,[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]为[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]次不可约多项式. 证明:[tex=1.857x1.357]JLhpe6im6yaVqgdD5OYnKQ==[/tex]整除[tex=3.571x1.357]1Bl0boLIAs4rkF/1q1osRw==[/tex].
- 3
设[tex=0.643x0.786]SPoVA3bJlgfP9Ek9O4AbuA==[/tex]在[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上可分, [tex=0.571x1.214]DXE2qJe9QayJDT2HOCKrUg==[/tex]在[tex=2.071x1.357]AyAHq4hpDPrw7tF5WF43xg==[/tex]上可分, 则[tex=0.571x1.214]DXE2qJe9QayJDT2HOCKrUg==[/tex]在[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]上可分.
- 4
如图,[tex=3.143x1.286]REaUoNxha/GBn3DE8cgfDA==[/tex]是边长为4的正方形,[tex=0.786x1.286]YggwMQ4w3PxfhkmL0NfgdQ==[/tex]、[tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex]分别为[tex=1.571x1.286]cHJ4KDAad01mWuGaiQQpfA==[/tex]、[tex=1.571x1.286]hOo99m7YJCAnVf2cQGX8dQ==[/tex]的中点,则阴影部分的面积为[img=163x138]17e6c55620e728c.png[/img] A: 4 B: 5 C: 6 D: 7 E: 8