设 [tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex] 均为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶对称矩阵,试判定下列结论是否正确,并说明理由。 [tex=1.286x1.0]Q2QDlJYjZiuoPGdhIqlIoQ==[/tex] 为对称矩阵 ( [tex=0.571x1.0]rFc/sfAAuCOtzhevhoREeA==[/tex] 为任意常数);
举一反三
- 设 [tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex] 均为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶对称矩阵,试判定下列结论是否正确,并说明理由。 [tex=1.571x1.0]mCjAngcIqtveplNftuY0BQ==[/tex] 为对称矩阵。
- 设 [tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex] 均为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶对称矩阵,试判定下列结论是否正确,并说明理由。[tex=2.286x1.143]Px4s+PosevWooBpZPidJvg==[/tex] 为对称矩阵;
- 设 [tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex] 为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵,且[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为对称矩阵,证明 [tex=2.714x1.0]DxwbvStVdvuC7mTHegGPzg==[/tex] 也是对称矩阵。
- 设 [tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex]均为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶可逆矩阵,证明: [tex=5.786x1.357]cRSSutUe8lxP7o+KrExJjIlQDv25D1qSOdQh99TznTk=[/tex]
- 设 [tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex]均为 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶可逆矩阵,证明: [tex=6.214x1.357]7fk4PDAIPUAv1IgmkEs0Sbf05bnZtcbLsuVNpoSi4Z3eOOK/Ve5LV7wwbbwUB+k0+VhoMpWp41AeaOBiM8sOhA==[/tex].