设A为4×3矩阵,η1,η2,η3是非齐次线性方程组AX=β的3个线性无关的解,k1,k2为任意常数,则AX=β的通解为( )
A: (η2+η3)/2+k1(η2-η1).
B: (η2-η3)/2+k2(η2-η1).
C: (η2+η3)/2+k1(η3-η1)+k2(η2-η1).
D: (η2-η3)/2+k1(η3-η1)+k2(η2-η1).
A: (η2+η3)/2+k1(η2-η1).
B: (η2-η3)/2+k2(η2-η1).
C: (η2+η3)/2+k1(η3-η1)+k2(η2-η1).
D: (η2-η3)/2+k1(η3-η1)+k2(η2-η1).
举一反三
- 已知n元非齐次线性方程组Ax=B,秩r(A)=n-2,α1,α2,α3为其线性无关的解向量,k1,k2为任意常数,则Ax=B的通解为______。 A: x=k1(α1-α2)+k2(α1+α3)+α1 B: x=k1(α1-α3)+k2(α2+α3)+α1 C: x=k1(α2-α1)+k2(α2-α3)+α1 D: x=k1(α2-α3)+k2(α1+α2)+α1
- ζ1,ζ2,ζ3是AX=0的一个基础解系,α1,α2,α3也是AX=0的一个基础解系()。 A: α1=ζ1-ζ2,α2=ζ2-ζ3,α33=ζ3-ζ1 B: α1=ζ1+ζ2,α2=ζ2+ζ3,α33=ζ3+ζ1 C: α1=ζ1-ζ2,α2=2ζ2,α33=ζ2-ζ1 D: α1=2ζ1-ζ2-ζ3,α2=ζ2-ζ1,α33=ζ3-ζ1
- 设n维向量组α1,α2,α3线性无关,则正确的结论是()。 A: β1=α1-α2-α3,β2=α1+α2-α3,β3=-α1+α2+α3,向量组β1,β2,β3线性无关 B: β1=α1-α2+α3,β2=α2-α3,β3=α3-α1,向量组β1,β2,β3线性相关 C: β1=α1+α2,β2=α2-α3,β3=α3+α1,向量组β1,β2,β3线性无关 D: β1=α1-α2+α3,β2=-α1+α3,β3=-α1+2α2+α3,向量组β1,β2,β3线
- 设n元齐次线性方程组Ax=0,且R(A)=n-3,且α1,α2,α3为线性方程组Ax=0的三个线性无关的解向量,则齐次线性方程组Ax=0的基础解系为() A: α1+α2,α2+α3,α3+α1 B: α2-α1,α3-α2,α1-α3 C: 2α2-α1,α3-2α2,α1-α3 D: α1+α2+α3,α3-α2,-α1-2α3
- 设向量组α1,α2,α3,β1线性相关,向量组α1,α2,α3,β2线性无关,则对于任意常数k,必有______. A: α1,α2,α3,kβ1+β2线性无关 B: α1,α2,α3,kβ1+β2线性相关 C: α1,α2,α3,β1+kβ2线性无关 D: α1,α2,α3,β1+kβ2线性相关