计算[img=127x40]1803177bfc8c3e2.png[/img]的程序表达为
A: sqrt(sin alpha ^ 2 + cos beta ^ 2)
B: sqrt(sin^2(alpha) + cos^2(beta))
C: sqrt(pow(sin(alpha), 2) + pow(cos(beta), 2))
D: sqrt pow(sin(alpha), 2) + pow(cos(beta), 2)
A: sqrt(sin alpha ^ 2 + cos beta ^ 2)
B: sqrt(sin^2(alpha) + cos^2(beta))
C: sqrt(pow(sin(alpha), 2) + pow(cos(beta), 2))
D: sqrt pow(sin(alpha), 2) + pow(cos(beta), 2)
举一反三
- \((\cos\alpha \cos\beta, \cos\alpha \sin\beta, \sin\alpha),(1,1,0),(1,2,1)\)张成六面体体积最大为___. A: \(\sqrt{3}\) B: \(2\sqrt{3}\) C: \(\sqrt{6}\)
- 以下表达式中,有两个的计算结果是相同的,请挑选出来 A: 1 / sqrt(sin(x) * sin(x) + cos(y) * cos(y)) B: sqrt(pow(sin(x), 2) + pow(cos(y), 2)) C: pow(sin(x) * sin(x) + cos(y) * cos(y), 0.5) D: pow(pow(sin(x), 2) + pow(cos(y), 2), 2)
- (4)$A$矢量的方向余弦(与三个坐标轴的夹角余弦)的大小是: A: $cos\alpha=3/\sqrt{14},cos\beta=-1/\sqrt{14},cos\gamma=3/\sqrt{14}$ B: $cos\alpha=4/\sqrt{14},cos\beta=-1/\sqrt{14},cos\gamma=3/\sqrt{14}$ C: $cos\alpha=2/\sqrt{14},cos\beta=-1/\sqrt{14},cos\gamma=3/\sqrt{14}$ D: $cos\alpha=3/\sqrt{14},cos\beta=9/\sqrt{14},cos\gamma=3/\sqrt{14}$
- 以\( (2,2,1) \)为起点,以\( (1,3,0) \)为终点的向量的方向余弦为( ). A: \( \cos \alpha = { { - 1} \over {\sqrt 3 }},\cos \beta = {1 \over {\sqrt 3 }},\cos \gamma = { { - 1} \over {\sqrt 3 }} \) B: \( \cos \alpha = {1 \over {\sqrt 3 }},\cos \beta = { { - 1} \over {\sqrt 3 }},\cos \gamma = { { - 1} \over {\sqrt 3 }} \) C: \( \cos \alpha = { { - 1} \over {\sqrt 3 }},\cos \beta = { { - 1} \over {\sqrt 3 }},\cos \gamma = { { - 1} \over {\sqrt 3 }} \) D: \( \cos \alpha = { { - 1} \over {\sqrt 3 }},\cos \beta = { { - 1} \over {\sqrt 3 }},\cos \gamma = {1 \over {\sqrt 3 }} \)
- 将[img=83x51]17de8a0fc777b0b.png[/img]表示为程序所能接受的表达式,正确的为 A: sqrt(pow(x, 2) / (pow(x, 2) + 1)) B: sqrt(pow(2, x) / (pow(2, x) + 1)) C: pow(sqrt(2, x) / (sqrt(2, x) + 1)) D: pow(sqrt(x, 2) / (sqrt(x, 2) + 1))