某商店经销商品的利润率[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的密度函数为[img=152x47]17917625f25bb31.png[/img],求[tex=3.714x1.214]mvmvzUV9xKWAUDGb/Y3csg==[/tex]。
举一反三
- 某商店经销商品的利润率 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的密度函数为 [tex=13.643x2.786]ACpG7W/lXiEwdW69ASBj8+yO184oYGlqpSG3uiLrEDkZuucljvn84Aswhadv9hBhxt02XapZBYYdNltyt9WtDOeEb6/AnbmX1G1fIlSrduk=[/tex] 求 [tex=3.714x1.214]mvmvzUV9xKWAUDGb/Y3csg==[/tex]。
- 设随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的密度函数为[tex=8.5x2.143]Ca+H1VjqhIFFe3JC2XAU2rOuJUFZivOezxxgZEpNix4wWRHa7Q2XYP2aHPPIgOy/[/tex],试求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的特征函数.
- 已知离散型随机变量[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的概率分布为[img=397x83]178ee6aa0d1a25e.png[/img](1) 写出[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的分布函数[tex=2.0x1.357]6D04mYW2ivsCmiBu0E4w8w==[/tex];(2) 求[tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex]的数学期望和方差.
- 已知随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的概率密度为[tex=13.0x2.357]nHHN4pLpj1G1uhQpyLUatreMse16BhxCX+nm8cZ5nxW1R+KIjomlLFfyrFplv9mykQ0cFIpaQRbRTlU90WEwNA==[/tex]求 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布函数.
- 设随机变量 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 与 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 相互独立,其中 [tex=0.857x1.0]KGogyvwDAIJf/iL0H/9wjg==[/tex] 的分布律为[img=217x62]17761598d7e8371.png[/img]而 [tex=0.643x1.0]jDVSpgNhHe+VJmgvx3gg1Q==[/tex] 的密度函数为 [tex=2.071x1.357]Wf/eNf1z3Bb6TyEy/WRL1A==[/tex] 求随机变量 [tex=3.714x1.143]wQlTAdtDs1fa21EP7mnykg==[/tex] 的密度函数 [tex=2.5x1.357]ZwbZmG2MqD52Q0FFqDvccA==[/tex]