举一反三
- 令[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是数域[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]上一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶反对称矩阵,即满足条件[tex=3.5x1.357]94lt/XH9Z+eRnjmPIYb4+Q==[/tex].证明:反对称矩阵的秩一定是偶数.
- 数域[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]上一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]叫做一个幂等矩阵,如果[tex=3.286x1.214]rPRBSosCEth94R4jBBpQCQ==[/tex].设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是一个幂等矩阵.证明,秩[tex=1.571x1.143]J3m9F+ixGrk39WtzDO4fXw==[/tex]秩[tex=4.143x1.357]ZAmGlJat3U9uyo3jOvLObA==[/tex].
- 令[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]是数域[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]上一切满足条件[tex=2.786x1.214]mvwhVwJL24ydveTXjvDdxQ==[/tex]的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]所组成的向量空间,求[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]的维数.
- 设[tex=0.643x1.0]fYkALuFzYlFm0R716i1EGA==[/tex]是复数域上一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶对称矩阵,证明存在复数域上一个矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex],使得[tex=3.357x1.214]cEyQZ7EYqIDjAlbRYg3lAQ==[/tex]
- 设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶对称矩阵,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶正交矩阵,证明[tex=3.286x1.214]gOs/eXCB4zyspRW4NZ7Kog==[/tex]也是对称矩阵。
内容
- 0
设 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 为 [tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex] 阶实矩阵, 满足 [tex=3.643x1.214]u9ZFFjrmdLitRdLiKCtqhjog7ZeYbiv+qENyuyHI7/w=[/tex], 求证: [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 是对称矩阵.
- 1
证明:数域[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]上的一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]次多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]能被它的导数整除的充要条件是[tex=6.214x1.357]EI6Md4gaXY8NAPfJRw0kQKKnYtAWTE3d06PyWpxl+Fw=[/tex]这里[tex=1.429x1.214]HCTRLtzxkeBZo1HKwKR3/g==[/tex]是[tex=0.643x1.0]J+LW/0i6Fe+lWEmBUgT8zg==[/tex]中的数.
- 2
设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是实数域上的[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级对称矩阵,且[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的秩为[tex=3.0x1.357]jGI6hkgva7Rcyr50NnHREw==[/tex]。证明:[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的所有不等于0的[tex=0.5x0.786]Tg0I1PUwmDJ7uXa9+yiYMA==[/tex]阶主子式都同号。
- 3
求满足[tex=3.857x1.0]DJac4k0FeJdLX0wscLcfCA==[/tex]条件的所有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]
- 4
证明:如果[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级正定矩阵,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级实对称矩阵,则存在一个[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]级实可逆矩阵[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex],使得[tex=2.5x1.143]/m30iNU/otWBkTYP2S1GqQ==[/tex]与[tex=2.5x1.143]QLBQCRpLt7DO7ViQLYKywA==[/tex]都是对角矩阵。