1. 函数$y=\arctan x$在$x=0$处的$3$阶导数值为______ 。2. Legendre多项式${{L}_{n}}(x)=\frac{{{\text{d}}^{n}}[{{({{x}^{2}}-1)}^{n}}]}{\text{d}{{x}^{n}}},\ n=1,2,...$,则${{L}_{2}}(1)=$______ 。
举一反三
- 1. 函数$y=\arctan x$在$x=0$处的$3$阶导数值为______ 。2. Legendre多项式${{L}_{n}}(x)=\frac{{{\text{d}}^{n}}[{{({{x}^{2}}-1)}^{n}}]}{\text{d}{{x}^{n}}},\ n=1,2,...$,则${{L}_{2}}(1)=$______ 。3. 若$f(x)={{x}^{2}}\cos x$,则${{f}^{(50)}}(0)=$______ 。
- 函数\(f(x) = x^2,\; x \in [-\pi,\pi]\)的Fourier级数为 A: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) B: \(\frac{\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\) C: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \sin nx ,\; x \in [-\pi,\pi]\) D: \(\frac{2\pi^2}{3}+4\Sigma_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos nx ,\; x \in [-\pi,\pi]\)
- 函数$y=\ln x$的$n$阶导数为 A: $\frac{(n-1)!}{x^n}$ B: $\frac{n!}{x^n}$ C: $(-1)^{n-1}\frac{(n-1)!}{x^n}$ D: $(-1)^n\frac{(n-1)!}{x^n}$
- 11. 设函数$f(x)=({{\text{e}}^{x}}-1)({{\text{e}}^{2x}}-2)\cdots ({{\text{e}}^{nx}}-n)$,其中$n$为正整数,则${f}'(0)=$( )。 A: ${{(-1)}^{n-1}}(n-1)!$ B: ${{(-1)}^{n}}(n-1)!$ C: ${{(-1)}^{n-1}}n!$ D: ${{(-1)}^{n}}n!$
- 下面级数求和错误的是 A: $\sum_{n=0}^\infty q^n = \frac{1}{1-q} (0\lt q\lt1) $ B: $\sum_{n=1}^\infty \frac{x^{2^{n-1}}}{1-x^{2^n}} = \frac{x}{1-x} (|x|\lt 1) $ C: $\sum_{n=1}^\infty \frac{1}{{n!}} = e $ D: $\sum_{n=1}^\infty \frac{x^{2^{n-1}}}{1-x^{2^n}} = \frac{1}{1-x} (x>1) $