设[tex=2.643x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex]在点 [tex=3.214x1.357]zCanG4ejBTFiCn/1sv9lng==[/tex]处沿[tex=4.429x1.357]h6xo+7V1ZX5IAhYUUPhqaA==[/tex] 的方向导数是1, 沿 [tex=4.429x1.357]HDnLsVebWr3wWXlcMB7qwQ==[/tex] 的方向导数是 [tex=1.286x1.143]QmCUyHKzIDKL5gU0MTgNVQ==[/tex], 求 [tex=2.643x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex] 在点[tex=1.0x1.214]QSpWrsvLbsISAe8gQyDfNg==[/tex] 处沿 [tex=2.286x1.357]OAb9CWNl+xmx9J4hXjNvXg==[/tex]的方向导数.
举一反三
- 考虑二元函数 [tex=2.643x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex]的下面 4 条性质:(1) 函数[tex=2.643x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex]在点[tex=2.857x1.357]EZ1YLh+FMEcQAjNnWDBjTOIsNztTlNE8eiBgVShrvuw=[/tex]处连续 ;(2) 函数 [tex=2.643x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex]在点 [tex=2.857x1.357]EZ1YLh+FMEcQAjNnWDBjTOIsNztTlNE8eiBgVShrvuw=[/tex]处两个偏导数连续 ;(3) 函数 [tex=2.643x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex]在点[tex=2.857x1.357]EZ1YLh+FMEcQAjNnWDBjTOIsNztTlNE8eiBgVShrvuw=[/tex]处可微(4) 函数 [tex=2.643x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex] 在点 [tex=2.857x1.357]EZ1YLh+FMEcQAjNnWDBjTOIsNztTlNE8eiBgVShrvuw=[/tex]处两个偏导数存在.则下面结论正确的是 未知类型:{'options': ['[tex=7.0x1.357]LI/A6g83qMWkspQoIAxg235oMvxzT+olJO0vBJtaNVR6AeEc+bTbt8K1FaN91+ii[/tex]', '[tex=7.0x1.357]2msp+hqepc3OQyJW39s3znrPQd2cQyONz0sQpidnkm5CLqdI1zJf0rQvDLR4w8ya[/tex]', '[tex=7.0x1.357]2msp+hqepc3OQyJW39s3zsRXAYoUByh3gckcm3YOTCoRoRyvvTWqy8GXrRUSDL3H[/tex]', '[tex=7.0x1.357]2msp+hqepc3OQyJW39s3zib0s5Zt3aK71zIoZbNqO3oywpSFgiM5nrGM6ykqZb3e[/tex]'], 'type': 102}
- 设函数[tex=5.571x1.643]lZeqg0KDffhYAgbKF6DYOaes91w16Eob6wB+yLa6Vfw=[/tex]和点[tex=4.429x1.357]yUUsdtKdAbvYqTbv54RT+g==[/tex],点[tex=4.429x1.357]VAahTQtW/o5ZMm9/u3SoGg==[/tex](1)求函数[tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex]在点[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]处沿方向凶的方向导数;(2)问函数[tex=0.643x0.786]dFKQavWFzybe6S1GPVXNhQ==[/tex]在点[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]沿什么方向的方向导数最大?并且求出方向导数最大值。
- 设[tex=4.071x1.357]wv7dtiqAMpwq3KU42Pxfvw==[/tex]在点[tex=3.214x1.357]zCanG4ejBTFiCn/1sv9lng==[/tex]处可微,且在该点处指向点[tex=3.857x1.357]VSJCf7kYaxY03idioc4cdA==[/tex]的方向导数为1,指向原点的方向导数为[tex=1.286x1.143]sM5ZcR/I6JeRzaJbWD8Ckg==[/tex],求指向点[tex=3.857x1.357]tVeqqdzRzKd+i76l4VkcfA==[/tex]的方向导数.
- 若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?
- 设 [tex=14.929x4.5]5Cmgwu1OybHBcWwAUtmUQdgTeSTqBtCKnqbhBHzdyU5ZII/vU8PieqG16YbUAI+XPtMcNmWugkrmRJv9zxPlbSYXlRT9y3qEId/G95ZpKOyczPcKNZ/S84fcMuaTAa6maW5kIJOr7SFkjj2Pv1IEc12jpVJFO+2/nmYQ5KXgPIA=[/tex] 证明: (1) [tex=2.643x1.357]g1Wo3ALRzTk0js5m9GO2sA==[/tex] 在点 [tex=2.286x1.357]sVCzP1QNUT517zJi7AAZqw==[/tex] 处不连续; (2) 偏导数存在; (3)不可微分.