函数$f(x,y,z)=x{{y}^{2}}{{z}^{3}}$在点$(1,1,1)$处的最大方向导数为 ( ).
A: $14$
B: $6$
C: $\sqrt{14}$
D: $\sqrt{6}$
A: $14$
B: $6$
C: $\sqrt{14}$
D: $\sqrt{6}$
举一反三
- \( z = x{y^2} \)在点 \( ( - 1,1) \)处最大的方向导数=( )。 A: \(1\) B: \( \sqrt 2 \) C: \( \sqrt 3 \) D: \( \sqrt 5 \)
- \( z = {x^2} +{y^2} \)在点\( (1,2) \)处的最大方向导数=( )。 A: \( \sqrt 5 \) B: \( 2\sqrt 5 \) C: \( 2\sqrt 3 \) D: \( \sqrt 3 \)
- 求函数$y = \root 3 \of {x + \sqrt x } $的导数$y' = $( ) A: ${{1 + 2\sqrt x } \over {\root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ B: $ {{1 + 2\sqrt x } \over {6\root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ C: $ {{1 + 2\sqrt x } \over {6\sqrt x \cdot \root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$ D: $ {{1 + 2\sqrt x } \over {\sqrt x \cdot \root 3 \of {{{\left( {x + \sqrt x } \right)}^2}} }}$
- \( u = 2{x^2}yz \)在点 \( (1,1,1) \)处最大的方向导数 =( )。 A: \( 24\) B: \( 2\sqrt 6 \) C: \( 2\sqrt 3 \) D: \( \sqrt 6 \)
- 求函数$y = {{1 + \root 3 \of {{x^2}} - \sqrt {2x} } \over {\sqrt x }}$的导数$y' = $( ) A: $ {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ B: $ - {1 \over 2}{x^{ - {3 \over 2}}} + {1 \over 6}{x^{ - {5 \over 6}}}$ C: ${1 \over 2}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$ D: ${1 \over 3}{x^{ - {3 \over 2}}} - {1 \over 6}{x^{ - {5 \over 6}}}$