已知向量组a1(a,3,1)a2(2,b,3)a3(1,2,1)a4(2,3,1)的秩为2,求a,b
举一反三
- 已知向量组(Ⅰ)α1,α2,α3的秩为3,向量组(Ⅱ)α1,α2,α3,α4的秩为3,向量组(Ⅲ)α1,α2,α3,α5的秩为4,证明向量组α1,α2,α3,α5-α4的秩为4.
- 设向量a1=(1 1 2)T,a2=(2 t 4)T,a3=(t 3 6)T,a4=(0 2 2t)T。若向量组{a1,a2,a3,a4}的秩是3,矩阵A=(a1 a2 a3)的秩是2,则参数t=()。 A: 2 B: 3 C: 4 D: 6
- 求向量组:a1=(1 0 2 1),a2=(1 2 0 1),a3=(2 1 3 0),a4=(2 5 -1 4),a5=(1 -1 3 -1)的秩和一个最大无关组,并把其余列向量用这个最大无关组线性表示
- 【填空题】设向量组 α 1 = ( 1 , 2 , 3 ), α 2 = ( 4 , 5 , 6 ), α 3 = ( 3 , 3 , 3 )与向量组 β 1 , β 2 ,β 3 等价,则向量组 β 1 , β 2 , β 3 的秩为 __________.
- 向量组1:a1,a2,a3和向量组2:a1,a2,a4的秩为2与3.求证向量组3:a1,a2,a3+a4的秩为3.