举一反三
- 求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?
- 证明如果函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]和[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]使得[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是[tex=3.143x1.357]ZuRtT8Wk+WJPrIgEMh/UFQ==[/tex]的,则[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是[tex=3.429x1.357]pweQz6vYdJSfN1APBJuJ8Q==[/tex]的。
- 证明:若单调有界函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]可取到[tex=1.857x1.357]RATHhMM+aZZTABv/ShIDpw==[/tex],[tex=1.714x1.357]vWo7kUqXgseeDQ/rfab+vQ==[/tex]之间的一切值,则[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=2.214x1.357]mpyYBdP7k8056w1o+qOOxw==[/tex]连续.
- 若[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=1.857x1.357]Q20AODdbLvkRLRR8X13dbw==[/tex]连续,[tex=12.286x1.429]N1Msqfjd0pQuDNRpRE+PwFnLe713X051CN6T8g/Disy28ONwwqcig3DwgHj+7ryFHt+zs4IvKr2NY/AUjH4Y7Q==[/tex],则[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=2.214x1.357]mpyYBdP7k8056w1o+qOOxw==[/tex]至少有一个零点.
- 证明,若函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]可微及[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]为正整数,则[p=align:center][tex=14.214x2.786]8vJYfWnQRBqJWdmg/yoyrH2P43w06gadZy8qji07s82f3b/lDa0fQ3UyHRN4opm8Vux0CnU9NvYTJhpxqN8/n7yHL+SBcj3PyphkaQwtNXbsjwnfb854RzcJXc4kCkDQ[/tex]反之,若对于函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]有极限(1)存在,则可否判断此函数有导数?参考狄利克雷函数
内容
- 0
设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是可测集[tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]上的非负可测函数,试利用定理1. 3 证明(2) 若[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]还是有界的,则存在非负上升的简单函数列[tex=2.143x1.357]6neFUXQSMEb2KdQQeK7LqQWMvIZETs9PtatB8HA02Rg=[/tex], 使[tex=2.429x1.357]sMlw5nJcocmSMNK7l2GI9w==[/tex]在[tex=0.786x1.0]XvHgf70VtK2FH5G93l0k3g==[/tex]上一致收敛于[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]
- 1
设[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的导函数是[tex=2.0x1.0]nct/HBDLdQ+kqG+0LH7piw==[/tex],求函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的原函数
- 2
假定[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]、[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]和[tex=1.929x1.357]PF3ys5sCH7xL9V4l3n5Ang==[/tex]为函数,使得[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是[tex=3.429x1.357]pweQz6vYdJSfN1APBJuJ8Q==[/tex]的,[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]是[tex=3.5x1.357]i1h+gXObWOZdoFBEPZ7BbQ==[/tex]的。证明[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是[tex=3.5x1.357]i1h+gXObWOZdoFBEPZ7BbQ==[/tex]的。
- 3
下列周期函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]的周期为[tex=1.071x1.0]cWYnFY7tUlCT6WhMhv7goA==[/tex],试将[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]展开成傅里叶级数,如果[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在[tex=3.071x1.357]dI/zQ2dAuab0sI9V1YLd+w==[/tex]上的表达式为:(2)[tex=9.857x1.5]pRJ95vWGjr1f90QgKzUvPeOQo4NAF+TvdpFQUXXdEgWX1T3yQcFbyRAQWVPZ9iHG[/tex]
- 4
证明 :若函数[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]在有限或无穷的区间(a,b)内有有界的导数[tex=2.214x1.429]i+dnt0m+Vi0IpEF4DSu/zA==[/tex]则f(x)在(a,b)中一致连续.