设[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]是素数,[tex=2.5x1.357]vI/G64aXd+UP+7CU5TCqA994jlkj+UL2TEbcE27nsiw=[/tex]是[tex=1.071x1.286]o47uln10KUnmSfJmS1m2kSpHLMLBfvRFmO/jeuKxjYc=[/tex]的单超越扩张,求[tex=7.214x1.357]kLFSJY9qctqgMpkbylY3ysOhBnUup7ZIO9/adUgY3VoU2rqQFcEAGBhPk+hx6YWd[/tex]的分裂域[tex=0.857x1.0]eMszuSG5by5UfRZVROYp5A==[/tex]及其[tex=2.5x1.357]vI/G64aXd+UP+7CU5TCqA994jlkj+UL2TEbcE27nsiw=[/tex]自同构的个数。
举一反三
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
- 对素数 [tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex] 的不同值, 找出循环群[tex=1.143x1.357]oOz0oH4UpFaaOY7OuGotcg8wtMntQEjCiVorwD1W3R4=[/tex]的所有生成元和所有子群.(1) 7 ; (2) 11 ; (3) 13(4) 17 ; (5) 19 ; (6) 23 .
- 设[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]是有限域,[tex=1.071x1.286]o47uln10KUnmSfJmS1m2kSpHLMLBfvRFmO/jeuKxjYc=[/tex]是[tex=0.857x1.0]FfIhW8W8Jb8XV2jfmtoNZA==[/tex]中素域,则[tex=3.286x1.071]GqCiqeeqnC8xs45a2MeVIfQRnBRuFbRwaHAvhJ/Il0w=[/tex],[tex=0.643x0.786]W9TCskxkagdDgWMvasdFzg==[/tex]在 [tex=1.071x1.286]o47uln10KUnmSfJmS1m2kSpHLMLBfvRFmO/jeuKxjYc=[/tex]上是代数元。
- [tex=22.0x1.357]LHJ+y85YXU3v8GHWdrdQw3Wkm42jO1uuQ9ReIJQjcZKuQS9dt8xQcTgSBjKkS3fb[/tex][color=#000000][b],[/b][/color][color=#000000][b]求 [/b][tex=3.143x1.214]oFObQtwM9vyjjWL7fjyhww==[/tex][/color][color=#000000][b]全不发生的概率.[/b][/color] A: 3/8 B: 7/9 C: 5/9 D: 5/8
- 从供选择的答案中选出填入叙述中的方框内的正确答案计算非同构的根树的个数(1) 2 个顶点非同构的根树有 [tex=2.143x2.429]rVbjoKgaBYChmT2nPEBA4Q==[/tex] 个(2) 3 个顶点非同构的根树有 [tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex] 个(3) 4 个顶点非同构的根树有 [tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex] 个(4) 5 个顶点非同构的根树有 [tex=2.214x2.429]ZPUE0nZuXRHoore7NT++rQ==[/tex] 个供选择的答案[tex=6.071x1.286]GZbiT2P8T8KVyVUEWQpYyjIiVTkGekbnZrmhPI/Gp54=[/tex]:① 1; ② 2; ③ 3; ④ 4; ⑤ 5; ⑥ 6; ⑦ 7; ⑧ 8; ⑨ 9; ⑩ 10