举一反三
- 设3阶矩阵[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]的特征值为-2, -1, 3,矩阵[tex=6.786x1.357]5sQBSCH1+oEoQda8DcapHw==[/tex],求矩阵[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的行列式[tex=1.357x1.357]JRr5OoiiAPF9KB2ukKJtuw==[/tex]
- 设[tex=3.143x1.214]fC00PSr7EsIcGln2s0pq/A==[/tex]为3个随机事件,则下列结论中正确的是 未知类型:{'options': ['若[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]互不相容,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]互不相容,则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]互不相容[br][/br]', '若[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]对立,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]对立,则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]也是对立事件', '若[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]包含[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex],[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]包含[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex],则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]包含[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]', '若[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]独立,[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]独立,则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与[tex=0.714x1.0]J/aA9EEo0KmJFnWWfX7LmQ==[/tex]一定独立[br][/br]'], 'type': 102}
- 进行 4 次独立重复试验,每次试验中事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]发生的概率为0.3,如果事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]不发生,则事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]也不发生;如果事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]发生 1 次,则事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]发生的概率为0.4 ;如果事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]发生 2 次,则事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]发生的概率为0.6;如果事件[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]发生 2 次以上,则事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]一定发生.求事件[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]发生的概率.
- 对任意两件事[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]和[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex], [tex=5.214x1.357]2srdP6vK7D5mMBvqTKYrJw==[/tex][input=type:blank,size:6][/input].
- 证明: 如果 [tex=8.5x1.357]RSZqSdXbbE6ZW6RyApSysQ==[/tex], 则当 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 与 [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 互斥时, [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 与 [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 不独立.
内容
- 0
设向量组[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]与向量组[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]的秩相等,且[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]组可由[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]组线性表示。证明[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]组与[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]组等价。
- 1
设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]为[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶可逆矩阵,且[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]相似于[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex],试证:[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]为可逆矩阵
- 2
证明事件 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 与 [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 相互独立 [tex=0.5x1.0]rYOiDj8WGCtLXbsoCBShoA==[/tex] 事件 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 与 [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 补([tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 的补集)相互独立。
- 3
设[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]和[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]都是[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]阶矩阵.证明若[tex=1.571x1.0]JLMbVw4e37VvhkU494+8Ew==[/tex]可逆,则[tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex]和[tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex]都可逆.
- 4
设 2 个相互独立的事件 [tex=2.0x1.214]p/fPb4cKwKYaAJ8NhtZPtw==[/tex] 都不发生的概率为[tex=0.786x2.357]YK+uoLOCM/d1CgPR278pSQ==[/tex] , [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 发生 [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 不发生的概率与 [tex=0.786x1.0]ri6gmnf1+J9dGqG5/1sV6A==[/tex] 发生 [tex=0.786x1.0]Yn3GgEZev6SOu2r4v1WnCw==[/tex] 不发生的概率相等,则 [tex=3.0x1.357]HX6hzBJ4AyvQWdl2MbjLvw==[/tex][input=type:blank,size:6][/input].