举一反三
- 产品[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]是互补品。需求函数;[br][/br]$Q_{X}=640-4 P_{X}-P_{Y}, \quad Q_{Y}=\frac{1}{2} Q_{X}-\frac{1}{2} P_{Y}$\ \假定两者短期供给是固定的:[br][/br][tex=7.571x1.214]CfZnuLHqwTFF3JM+8Dj0b8jBQ/cIxAsLu6pTzTLTHBE=[/tex]求:这两种产品的均衡价格为多少?
- 求函数[tex=3.286x1.429]kdT+eIE7CHPynuN6CaN40g==[/tex](抛物线)隐函数的导数[tex=1.071x1.429]BUw1BPFU3fsJlAl/vt9M9w==[/tex]当x=2与y=4及当x=2与y=0时,[tex=0.786x1.357]Hq6bf3CacUy07X+VImUMaA==[/tex]等于什么?
- 证明:设[tex=2.5x1.143]TiKXNJpck7QZybOVpHjBBQ==[/tex],则(1)[tex=4.071x1.357]XuP7RmUEJaAkHVU8iAv+9Q==[/tex];(2)[tex=4.214x1.357]AqKFQ399rus+wrghQrqZ2w==[/tex];(3)[tex=6.714x1.5]88w0pH97sf309OJM2l0ulfXdE4LOhDA5RyW64p7MDoY=[/tex]。[br][/br]
- 若:(1)函数 f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数;(2)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数,而函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]有导数;(3)函数f(x)在点[tex=3.714x1.357]7VByCIzkNySq3s2l9I6f5zccNJDeV+6SQrVr3iwjgB0=[/tex]没有导数及函数g(x)在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数,则函数[tex=5.643x1.357]GmtX7Vop79exGU/rpqXUYw==[/tex]在已知点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]的可微性怎样?
- 设f(x)具有性质:[tex=8.571x1.357]8gPeznjMnng12qtkk9Vgczii1Sh4d1qJxc9iHYT5+YI=[/tex]证明:必有f(0)=0,[tex=5.5x1.357]rt5qCY7TXHcsFUQrD44nPA==[/tex](p为任意正整数)
内容
- 0
若:(1)函数 f(x)在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]有导数,而函数g(x)在此点没有导数;(2)函数f(x)和g(x)二者在点[tex=0.929x1.0]cjoIbYuE/p4IqfLA8eA4ZA==[/tex]都没有导数,可否断定它们的和[tex=7.214x1.357]oX568MWmpJJk2c1dN8FEzQ==[/tex]在点[tex=2.286x1.0]DSJKaWfJALImFxxTg/8qhA==[/tex]没有导数?
- 1
产品[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]和[tex=0.643x1.0]O+viFNA0oHTwnBtQyi80Zw==[/tex]是互补品。需求函数;[br][/br]$Q_{X}=640-4 P_{X}-P_{Y}, \quad Q_{Y}=\frac{1}{2} Q_{X}-\frac{1}{2} P_{Y}$\ \假定两者短期供给是固定的:[br][/br]$Q_{X}=500, Q_{Y}=240$求:假如[tex=0.857x1.0]N7iCrOsS+NNEUUlnsYCi1g==[/tex]产品的供给增加了20,会对两种商品的价格产生什么影响?
- 2
设[tex=5.214x1.214]l2vYijvwphpA0Bdo8olvNhKvOVd4RCELKut0jj6S5qs=[/tex]是连续映射,Y是Hausdorff空间,证明:(1)集合[tex=9.357x1.357]QCqopxinhs+TvVYgLw48vVpO4x/Rie4gzAlmw62rJGM=[/tex]是X的闭子集;(2)如果A是X的稠密子集且[tex=3.714x1.357]fo4X83uQk0aLKgSpBjpSMw8oj58YdJ5bCiu5d4gfWQqZvgjwV7CYEcyqXJHmRmoq[/tex],则f=g。
- 3
掷一枚均匀骰子,直到出现的点数小于3为止,记抛掷的次数为X,则以下结果正确的是 A: P(X=2)=2/9 B: P(X≥3)=4/9 C: P(X≤3)=19/27 D: P(X=1)=2/3 E: P(X≤2)=3/4 F: P(X=1)=1/2 G: P(X=2)=1/4 H: P(X<3)=7/8
- 4
求下列不定积分.[tex=7.286x2.643]28VI4S//fW038PiMAbBHktfj3FfJYocy4+TgcP5gH+6DCjcL5MVe5w4GLCJx2oaC[/tex].腺 由于 $\sin ^{4} x+\cos ^{4} x=\left(\cos ^{2} x-\sin ^{2} x\right)^{2}+2 \sin ^{2} x \cos ^{2} x$$=\cos ^{2} 2 x+\frac{1}{2} \sin ^{2} 2 x$原式 $=\int \frac{\mathrm{d} x}{\cos ^{2} 2 x+\frac{1}{2} \sin ^{2} 2 x}$