举一反三
- 设[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是一个非空集合,在[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]上面定义了一种运算,称为乘法,它满足结合律,并且对任意在[tex=3.357x1.286]pVHwNKFJ7Q0OjEOSIh66Tg==[/tex],方程[tex=2.857x1.286]+ggcAk2ChmBLn/GNkrsqfQ==[/tex]在[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]中有解,方程[tex=2.786x1.286]U9XNqcDw83o/kU7Mi7Iplg==[/tex]在[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]中也有解。证明[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是一个群。
- 设[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex] 为群, [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是[tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex]中的 2 阶元,证明 [tex=0.786x1.0]LyvDGollVJ+xwurtsLcn0g==[/tex] 中与[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]可交换的元素构成[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的子群.
- 设[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是一个群.[tex=2.0x1.071]6eaFNvbNfTsEPFqVDwsSaw==[/tex],映射[tex=6.571x1.214]wQz4OGfsjBJV5Yp9o6K9IMM6f2LcgvqZTGlGDIjs3e6yjpcJzhXqLWJ8N9uUiFcC[/tex]叫做[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的一个左平移,证明:左平移[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]到自身的一个双射.
- 试证:群[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的指数为2的子群[tex=0.857x1.0]HcQeTeQtUqN73yUJqDRZkQ==[/tex]一定是[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的正规子群.
- 6个顶点11条边的所有非同构的连通的简单非平面图有[tex=2.143x2.429]iP+B62/T05A6ZTM0eeaWiQ==[/tex]个,其中有[tex=2.143x2.429]ndZSw3zT0QTOVLVdoUto1Q==[/tex]个含子图[tex=1.786x1.286]J+vVZa2YaMpc6mJBbqVvWw==[/tex],有[tex=2.143x2.429]lmhx48evnQMhi03NovPXig==[/tex]个含与[tex=1.214x1.214]kFXZ1uR8GjycbJx+Ts2kyQ==[/tex]同胚的子图。供选择的答案[tex=3.071x1.214]3KinXFh3SXhZ7nIe1y9KEV6aadxhhJWeEy6Dij1iObdMUZkY6ZA5J2dVVjPSuhEf[/tex]:(1) 1 ;(2) 2 ;(3) 3 ; (4) 4 ;(5) 5 ;(6) 6 ; (7) 7 ; (8) 8 。
内容
- 0
由非空集合X的所有子集构成的集合称为X的幂集,记作[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex].(1)设X={a,b,c},求[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex].(2)设X是由n个元素组成的有限集,证明[tex=1.143x1.214]6fgP1j+0v37iZFMJocAU+g==[/tex]中含有[tex=1.0x1.0]j//x0/Z+ltpf5R8ThFOpMA==[/tex]个元素.
- 1
设[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]是一个有单位元的环. 如果[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]中元素[tex=1.286x1.214]rkgrF+YaaESwSQDjR6KfWg==[/tex]有[tex=2.286x1.0]rZ0c/DqUwOwC6KLNVAW7uQ==[/tex],则称 [tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]是[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]的一个右逆元,而称[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]是[tex=0.429x1.0]Q2fWySASH/4Xf2eu85OwAQ==[/tex]的一个左逆元. 证明卡普兰斯基(L Kaplansky) 定理:若[tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex]中元素[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]有多于一个的右逆元,则[tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex]必有无限多个右逆元.
- 2
图[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个顶点,[tex=2.357x1.143]dkoxwOpyXKTw0HsOj3nnBg==[/tex]条边,证明[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]中至少有一个顶点度数大于等于[tex=0.5x1.0]/BQKP5E8YnupUQ2sDg7w1Q==[/tex]。
- 3
设[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是群,[tex=5.286x1.071]VvvX0GFuqWNzrMDUrg0hNQ==[/tex].如果[tex=5.929x1.214]WiIhW06O4h8DrzyJYgOSG//n94M5NRQ5+HQkzzjvS5punSAJ99du6II5VrE1GjPb[/tex],[tex=0.857x1.0]HcQeTeQtUqN73yUJqDRZkQ==[/tex]是否一定是[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]的正规子群?
- 4
设[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是带有[tex=0.643x0.786]SBMIs+VUk7//BOpfqlQl0w==[/tex]个顶点的简单图。证明:[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]是树当且仅当[tex=0.786x1.0]JTRtgqQ00R3dUQzwS4iwbg==[/tex]没有简单回路并且有[tex=1.929x1.143]odTH0p5clPZMk1jQf4ctjw==[/tex]条边。