• 2022-07-26
    设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是数域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的多项式, 已知 [tex=3.5x1.357]+wmeQ65qnTVSG8l2948lsg==[/tex], 求 [tex=4.929x1.571]qKSHXVbmncAknq3I/MJz3CW69JZdx3uX9GzIVQcrwkIFa6appYXVUdJZGR4xc0kp[/tex]
  • 解 设 [tex=15.429x1.5]RFHGC4wfBf7Ma5rR7ixkpKjyMP/dETtDgrbhefmhl+d/zXiexPyy5O5qaHzMRGUzICeoBdThaQqv6OitvYVQhw==[/tex],  得[tex=14.643x1.571]kCmGvem/470NIpjGCVT2JukUtHCrgpzGkUIIZ9ZuWB8w3As7S6DDtlyPxd5xJKIyOtww8D4W2oIuHjfXu6qFyv9cW3EOH2AR8FtjGHNwD85ESLeZfSa/R5DbxJC7Cmsm[/tex]直接证明: 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 的根为 [tex=5.786x1.0]bKUC97GbQKY2zeG3LTTxIZG4/9u10MlWmsoBvg3iypI=[/tex], 则 [tex=2.571x1.571]xuo/caF7g1JxzO9tAsH5V86vKIGL6HvCFQxi5J83Bis=[/tex] 的根为 [tex=8.214x1.357]9SabgBySkey5t1yYaM8qagr64gKZGRUU1Ay3npKMSdPywbtUxUCqzrag3zovPuLv[/tex][tex=35.071x6.571]kCmGvem/470NIpjGCVT2JukUtHCrgpzGkUIIZ9ZuWB8Af0W2QtGjtedIZ9VW3FX2lK0E18qC7bjyMMcwdQyqSia+Usz79UxqN9H1+2upA/OvAkaDpPy+Ouo/39mjCXprPNzNdQTVfIP1nArWgRLFtiA7iYWyVNwcwvkY05p7xEw+envj999Vz1h51CAJKosfbU5SdiMvbTSrI0fMD1b5JzWMAGGlgDtJLdEPyjeCY0oj5kS1JvFJdGHoomsNSNtYRiZa3stQp9gEcRFzTkJXGTQ//hy5hLvmHKxe5I5RzPnoJXSW1qZGc0GskXw0d8N9hA7z7EAjAQVmN/H8KyVuHo8fRalma5jtqC95iKZRax+uH3WLnc0TEc7WMIZQ1EpoyonHPxXbt3dLaFWcD7GYyuf0LvsUKJytqAjaRyArYjGDrOOfw5mxb3By+q3oLNeF[/tex][tex=16.071x2.857]ztKwkv+xmcTkpfeZTf/IQw0RgJWdkpBZzGdOh4DFt0WdFn/Q8NY3I3nbqhPsaedir5tQ/K7+1UppgvB+HiquCzWHZnt5ebVDgD6GO3HMaMatiyn9OqHPIaIQLaJJYlaa/U6x3Jub8g+p/2SmZ4hBbg==[/tex][tex=25.643x2.857]ztKwkv+xmcTkpfeZTf/IQw0RgJWdkpBZzGdOh4DFt0WdFn/Q8NY3I3nbqhPsaedir5tQ/K7+1UppgvB+HiquCzWHZnt5ebVDgD6GO3HMaMZIm2K7DcQv/yUDBIx4bkAqqBivaJpYbZFAOqCv2iDEU5nZwuG36AgXrHc0fxB7RUXOteAndmiT48iaC/IgJERTFQI3kICNOIUFb1nBRaRTqg==[/tex]
    本题目来自[网课答案]本页地址:https://www.wkda.cn/ask/eeymoepxpteayoto.html

    举一反三

    内容

    • 0

      证明:数域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上的一个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]次多项式[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]能被它的导数整除的充分且必要条件是[tex=5.786x1.857]rvxDb4yZzzZueL5VRhZswR53HJzzePuFezIHz054AIA=[/tex],这里[tex=0.571x0.786]7G1MINzwputr5mgALyjQfA==[/tex],[tex=0.429x1.0]dX3JVuFw9r8t2KlWf+/Z+A==[/tex]是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]中的数.

    • 1

      设域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的特征[tex=2.357x1.214]pbc4vZT08gszjwicRtTRnQ==[/tex],[tex=2.0x1.357]b5RgJKaKKPxfWp6M6XOn8A==[/tex],试求[tex=2.357x1.143]RXPUuGtyMsNdtHsopW2V8w==[/tex]对[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的群。

    • 2

      设[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]是素数,[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]是域,[tex=3.786x1.214]Aw3CDihCL1ffMmVzlgh/Gc+QQcOIVGu5mkbxsO3H328=[/tex]且[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]包含[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]次单位根,[tex=2.0x1.071]fn8qSvoGdKV5LvM1JyIK2g==[/tex],求[tex=2.429x1.143]yW4k+iHURSbQxcCAtP9FKg==[/tex]对[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的群。

    • 3

      令[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]与[tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex]是[tex=1.786x1.357]2pFrMmryE2cRTmNCb4YNBA==[/tex]的多项式,而[tex=3.286x1.214]S1r9TKg/0CvhrA1vxbq3mQ==[/tex]是[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的数,并且[tex=4.571x1.214]DvNADmYR0N44UyefPGrZQw==[/tex],证明:[tex=17.357x1.357]itMzt+Xq2I3oX3qceqcuTg2rb1617SbxNy8ZuxnMW9NYtbfva+WVRcKx8ltAfW52[/tex]

    • 4

      设[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]是域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的有限扩张,证明[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]是完备域充分必要条件为 $[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]是完备域。