举一反三
- 设 [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是数域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]上的多项式且次数大于 0, 则 [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 在 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上不可约的充要条件是: 对 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上任意适合 [tex=6.357x1.357]+3zmuKty1AhSMDB3tNdbXxLJRZTFKVq4xUmyZwpiyJg=[/tex] 的多项式 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex], 或者 [tex=4.571x1.357]NaXhQuud9whTIdEia7cAy145H6cmmDHeiC85YWZqPkg=[/tex], 或者 [tex=4.286x1.357]Bjm/GfOl5UoUE3/6/N5Bew62HKPUKuqC0HS8DG8f9D4=[/tex]
- 设 [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 是数域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的不可约多项式, [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的多项式. 证明:若 [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 的某个复根 [tex=0.571x0.786]HXNXn3AXpwdIpZt8+6oCEw==[/tex] 也是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 的根, 则 [tex=4.571x1.357]NaXhQuud9whTIdEia7cAy145H6cmmDHeiC85YWZqPkg=[/tex], 特别地, [tex=1.857x1.357]VHvV9DduV1/OkZRTTw1+mg==[/tex] 的任一复根都是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 的根.
- 证明:次数>0 且首项系数为 1 的多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是一个不可约多项式 的充分必要条件是,对任意多项式[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]必有(f(x), g(x))=1,或者对某一正整数[tex=6.0x1.357]bR39wf/Hz75eMrt08Xqk8wt4bXTUCgLbWgBjqC5Zmko=[/tex].
- 设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是数域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的多项式, 已知 [tex=3.5x1.357]+wmeQ65qnTVSG8l2948lsg==[/tex], 求 [tex=4.929x1.571]qKSHXVbmncAknq3I/MJz3CW69JZdx3uX9GzIVQcrwkIFa6appYXVUdJZGR4xc0kp[/tex]
- 若 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是次数大于零的多项式且 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 可以整除 [tex=6.357x1.357]pGmCxVYMeXbY0RBdFv1lOoYMiK8I0KiEOR7VpOaifh0=[/tex], 求 证: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 的根只能是 0 或 1 的某个方根.
内容
- 0
设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是次数大于令的多项式, 求证: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 等于某个不可约多项式 的幂的充要条件是: 对任意非常数多项式 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex], 或者 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 和 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 互素, 或者 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 可以整除 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 的某个幂.
- 1
证明:次数大于0的首一多项式[tex=1.857x1.357]BGkv0wKMIn2R4tUsMDFEFA==[/tex]是某一不可约多项式的方幂的充分必要条件是,对任意的多项式[tex=1.857x1.357]QPi3lZKJ+q/B5QY5cuDuQg==[/tex]或者有(f(x), g(x))=1[tex=6.786x1.357]LBShIAKXyumE73h8+CWE0g==[/tex],或者对某一正整数[tex=0.929x0.786]D9maNLyVVGrC3QbL9jjRWg==[/tex],[tex=5.214x1.357]2b+0ZPIn+JhnqeNAq++wBM+CF08EAq9ClmGz91b+CDs=[/tex].
- 2
设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 是域 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 上的两个不可约多项式, [tex=1.286x1.214]rkgrF+YaaESwSQDjR6KfWg==[/tex] 分别是 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 与 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在 [tex=0.786x1.286]BlkXDnmzWHxe4M6E9LlofQ==[/tex] 的某个扩域 [tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex] 中的根. 证明: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 在 [tex=1.857x1.357]tPNFVy5slGvSYsD8XFn6/g==[/tex] 上可约当且仅当 [tex=1.857x1.357]fBOYuAIZ/H4m1Dx+my86tg==[/tex] 在 [tex=2.0x1.357]meCJel/67w3XgRBnBuDjxw==[/tex] 上 可约.
- 3
设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是复数域上的多项式, 若对任意的实数 [tex=2.643x1.357]iBJ26CUHVdKHcNejg97vnw==[/tex] 总是实数, 求 证: [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是实系数多项式.
- 4
设 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 是数域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的多项式且对任意的 [tex=2.714x1.214]fM/AeEA3d2UlyV0HQ3vQLA==[/tex], 总有 [tex=8.071x1.357]4qSSeGwWRF+xShFNqoZKdHzPuEpeSkd+kBiopnJQpq0=[/tex], 求证: [tex=3.714x1.357]pTgo5IUoVXYHzzmGelnxxg==[/tex], 其中 [tex=2.143x1.071]3sbGjGMJh5TubUkP5jTWOA==[/tex]