定态$Schrödinger$方程的“正”问题是给定势场 $V(x)$,求粒子的能量$E$ 和它的波函数 $\psi(x)$ 。现在考虑它的“反”问题:假如实验测得了粒子的坐标几率密度是的本征函数的是:$\rho(x)=(\psi(x))^2=\frac{C}{x^2+a^2},(a>0)$其中 $C$是常数(它的值并不重要),问:(1)若取$V(x)$的最小值$=0$,那么$V(x)=$?
A: $V(x)=\frac{\hbar^2}{2m}(\frac{2x^2-a^2}{(x^2+a^2)^2}+\frac{1}{a^2})$
B: $V(x)=\frac{\hbar}{2m}(\frac{2x-a}{x+a}+\frac{1}{a})$
C: $V(x)=\frac{\hbar^2}{4m}(\frac{2x^2-a^2}{(x^2+a^2)^2}+\frac{1}{a^2})$
D: $V(x)=2\hbar w$
A: $V(x)=\frac{\hbar^2}{2m}(\frac{2x^2-a^2}{(x^2+a^2)^2}+\frac{1}{a^2})$
B: $V(x)=\frac{\hbar}{2m}(\frac{2x-a}{x+a}+\frac{1}{a})$
C: $V(x)=\frac{\hbar^2}{4m}(\frac{2x^2-a^2}{(x^2+a^2)^2}+\frac{1}{a^2})$
D: $V(x)=2\hbar w$
举一反三
- 微分方程$y' = \sqrt{x},y(1)=0$的解为 A: $ \frac{2}{3} x^{\frac{3}{2}} + C $ B: $ \frac{2}{3} x^{\frac{3}{2}} -\frac{2}{3} $ C: $ x^{\frac{3}{2}}-1 $ D: $ x^{\frac{3}{2}}+C $
- 方程$(x^2+1)(y^2-1) + xy y' = 0$的通解为 A: $y^2 = C \frac{e^{-x^2}}{x^2}$ B: $y = C \frac{e^{-x^2}}{x^2}$ C: $y^2 = C \frac{e^{-x^2}}{x^2}+1$ D: $y=C \frac{e^{-x^2}}{x^2}+1$
- 4.已知二元函数$z(x,y)$满足方程$\frac{{{\partial }^{2}}z}{\partial x\partial y}=x+y$,并且$z(x,0)=x,z(0,y)={{y}^{2}}$,则$z(x,y)=$( ) A: $\frac{1}{2}({{x}^{2}}y-x{{y}^{2}})+{{y}^{2}}+x$ B: $\frac{1}{2}({{x}^{2}}{{y}^{2}}+xy)+{{y}^{2}}+x$ C: ${{x}^{2}}{{y}^{2}}+{{y}^{2}}+x$ D: $\frac{1}{2}({{x}^{2}}y+x{{y}^{2}})+{{y}^{2}}+x$
- 11. 函数$f(x)=\frac{x}{(1+x)^2}$ 的极大值为 A: $x=\frac{1}{4}$ B: $x=1$ C: $x=\frac{1}{2}$ D: $x=0$
- 将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)