设曲线上任一点 [tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex] 处的切线与 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴交于 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 点。已知原点与 [tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex] 点的距离等于 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 与 [tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex] 间的距离,且曲线过点 [tex=2.5x1.357]LhnNqMt4MCSmCsT9zN3bmA==[/tex] 求该曲线的方程。
举一反三
- 设曲线[tex=2.786x1.286]FRaQ+fSYmTey/VRrz/cA2g==[/tex](1)求曲线上点[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex],使[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]点处的切线与直线[tex=4.571x1.286]mCIddwK8TgrSbqK/SlosUw==[/tex]平行;(2)求曲线上点[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex],使[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]点处的切线与直线[tex=6.714x1.286]7qTFs7Q16C/1zRCCqYHS9Q==[/tex]垂直。
- 在曲线[tex=2.286x1.429]sraiNwH0IhPMSW9KtxLfMg==[/tex]上取一点 [tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex],过[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]的切线与该曲线交于[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex], 证明:曲线在[tex=0.786x1.286]gvyykdQdNBydRqWi9I4iuA==[/tex]处的切线斜率正好是在[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]处切线斜率的4倍。
- 过曲线 [tex=5.429x1.5]hyPnTn+3TvS/y5P32FJC0/RtFN//zR51OT7wHuH1nRU=[/tex] 某点处 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 作切线,使之与曲线及 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围图形的面积为 [tex=1.714x2.357]eVdsEHeHDHCGLDq9Vddkb9uKCiAlrN0c3eeUvCGhVDU=[/tex](1) 求切点[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的坐标及过 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的切线方程;(2) 求上述切线、曲线 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴所围图形绕 [tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex] 轴旋转成的旋转体体积.
- 过曲线[tex=5.429x1.5]Sk1LHo1scb9wXW4lE6QCJA==[/tex]上某点[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]作切线,使之与曲线及[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴所围图形的面积为[tex=1.286x2.357]iy7ZjKKJQIvT3NKLAZNJVw==[/tex](1) 求切点[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的坐标及过点[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的切线方程;(2) 求上述平面图形绕[tex=0.571x0.786]ZKO2xs0EgSemzoH7MSmYTA==[/tex]轴旋转的旋转体体积.
- 设矩阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]与[tex=0.786x1.286]dSWbQCTjdbLxKy7q0ps2gg==[/tex]都是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵,且[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]为对称矩阵,证明: [tex=2.643x1.214]RXNYPSeOxp2KYb7ZxErkfA==[/tex]也是对称矩阵。