构造区间 [tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上的最小零偏差[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]次代数多项式。
举一反三
- 证明[tex=2.929x1.357]EFs16bQITUnB7Op2XBHJF8j7RwO/JXmROs9DU0GNEvo=[/tex] 的最佳一致逼近[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]次多项式就是[tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex]在[tex=2.0x1.357]bXp5Vb63IyKXaWMS3BCP6w==[/tex]上的某个[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]次拉格朗日插值多项式。
- 证明: [tex=2.0x1.357]bhIid+utCyrxmES94DkZ5Q==[/tex] 中一个 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次 [tex=3.214x1.357]3v8oITlFKdpOMseWKj2iV4GAQRAhLzmH+sXlhlPYXOU=[/tex] 多项式 [tex=1.857x1.357]bZ4KhrFbnCaidqbMGQZfww==[/tex] 能被它的导数整除的充分必要条件是它与一个一次因式的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次幂相伴.
- 设[tex=0.571x1.0]FGGpnaR8m8C48rN8O0c7aw==[/tex]是一个素数. 证明:对任何正整数[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex],都存在一个在域 [tex=1.071x1.286]bM7qNVIctMbDn6oefl1jzg==[/tex]上不可约的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]次多项式.
- [tex=1.286x1.357]VAHhaW1te0xvoqDVN54/dg==[/tex][tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次 [tex=4.714x1.214]sT0ULBrShT/YXQeFT1P7AQ==[/tex]多项式 [tex=2.357x1.357]aGYh3gkt5/+ykdTAUb5LLA==[/tex]在 [tex=2.786x1.357]iNpjpyriz/zvGQtbcSWF0g==[/tex]中有 个不同的实零点,其零点 [tex=1.714x1.0]Vn6MZUd7gLMeiwSWSuXxdw==[/tex] .[tex=1.286x1.357]BEB68bP4vOVk/XYYizw11w==[/tex][tex=4.143x1.357]1G15aBTrim7G359lt5exh8gq4ctaWMCYv1V28aaFIxgPjb66ie3STusfSYjzLQHo[/tex]是区间[tex=2.0x1.357]pL+9s9nh77uX8/Gl5SRykA==[/tex]上权函数[tex=3.286x1.357]N5r+7JFezmpxAPIg6ah0rA==[/tex]的最高项系数为 1 的正交多项式族,其中 [tex=3.929x1.357]BT5S3KYmwK2+2SEnMbgh3O15QbR5zzqYkMai0JQllHY=[/tex] 则 [tex=6.571x2.786]ybep552s6B57scuqsHbervjUCYy0XZoV2CNQw/lbyk3KwPJ8/zWN25lMw6Pjb4Db[/tex] ,[tex=2.786x1.357]ABbZhvJ+iUhLrUT2TTUItw==[/tex] .[tex=1.286x1.357]H6tHfFjOZ3ZWdB4qPQ9Ocg==[/tex] 设 [tex=2.429x1.357]VRboAeHsLwdAzMzzTPRyVw==[/tex]为[tex=4.143x1.214]VdrPY68M8W0qs2Qy4V0Txw==[/tex]多项式,则[tex=8.714x2.857]GzT/lsVXHmmoGdnEUN5NP+TbiTUVrIQCV1eeTTkxYjk7i7IohuuOMcibmeE03nmA[/tex] .[tex=1.286x1.357]dF+j2ufB5JBOJwdIPfmkfg==[/tex]在所有首项系数为 1 的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]次多项式中,首项系数为 1 的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]次 多项式在[tex=2.786x1.357]iNpjpyriz/zvGQtbcSWF0g==[/tex]上与零的平方逼近误差最小.
- 若矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次幂零矩阵, 即 [tex=2.786x1.0]t6ogScZVzQ6nmR7J34fx7Q==[/tex] 但 [tex=4.5x1.429]LeMsK/GHf6ch8ZOCybGouXwgjeQprbWyKA1XUXYVQGI=[/tex] 如果 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 也是同阶 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 次幂零矩阵, 求证: [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 相似于 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex].