• 2021-04-14
    f(x)=1与g(x)=sec2x-tan2x是相同的函数.
  • 内容

    • 0

      \( {\sec ^2}x - {\tan ^2}x = \)______. ______

    • 1

      设 $y=\tan x^2$,则 $y'=$( ). A: $\sec x^2$ B: $\sec^2 x^2$ C: $2x\sec^2 x$ D: $2x\sec^2 x^2$

    • 2

      下列各选项中,函数相同的是( )。 A: \(<br/>f(x) = \ln {x^2},g(x) = 2\ln x \) B: \(<br/>f(x) = x,g(x) = \sqrt { { x^2}} \) C: \(<br/>f(x) = \sqrt { { x^2}} ,g(x) = \left| x \right| \) D: \(<br/>f(x) = { { {x^2} - 1} \over {x - 1}},g(x) = x + 1 \)

    • 3

      \( \int {\sec x(\sec x - \tan x)dx} = \)( ) A: \( \tan x - \sec x + C \) B: \( \tan x + \sec x + C \) C: \(- \tan x - \sec x + C \) D: \(- \tan x + \sec x + C \)

    • 4

      下列函数f(x)与g(x)表示同一函数的是(  ) A: f(x)=x0与g(x)=1 B: f(x)=x与g(x)=x2x C: f(x)=x2与g(x)=(x-1)2 D: f(x)=(x)2x与g(x)=x(x)2