判断证明(p→q)∧(q→r)∧¬r=﹥¬p 的过程是否正确。证明:⑴ p→q...¬p是前提p→q,q→r,¬r的有效结论
举一反三
- 判断证明(p→q)∧(q→r)∧¬rÞ¬p 的过程是否正确。 证明:⑴ p→q 前提引入 ⑵ q→r 前提引入 ⑶ p→r ⑴⑵假言三段论 ⑷ ¬r→¬p ⑶置换 ⑸ ¬r 前提引入 ⑹ ¬p ⑷ ⑸假言推理 所以¬p是前提p→q,q→r,¬r的有效结论
- 判断证明(p→q)∧(q→r)∧¬r=﹥¬p 的过程是否正确。 证明:⑴ p→q P规则 ⑵ q→r P规则 ⑶ p→r T⑴⑵I ⑷ ¬r→¬p T⑶E ⑸ ¬r P规则 ⑹ ¬p T⑷ ⑸I 所以¬p是前提p→q,q→r,¬r的有效结论
- 构造下列推理的证明。 (1)前提:¬P∨Q, ¬(Q∧R),R;结论:¬P。 (2)前提:(P→Q)→(Q→R),R→P;结论:Q→P。 (3)前提:P→(Q→R), ¬S∨P;结论:Q→(S→R)。 (4)前提:¬P∧¬Q;结论:¬(P∧Q)。 (5)前提:P→¬Q,R∨S,S→¬Q;结论:¬P
- 判断证明(p→q)∧(q→r)∧¬r=﹥¬p 的过程是否正确。 证明:⑴ p→q P规则 ⑵ q→r P规则 ⑶ p→r T⑴⑵I ⑷ ¬r→¬p T⑶E
- 若运用等值演算法证明P→(Q→R)≒(P∧Q)→R ,请判断下列证明过程是否正确 证明: P→(Q→R)≒¬P∨ (Q→R) ≒ ¬P∨ (¬Q ∨R) ≒( ¬P∨¬ Q ) ∨R ≒¬( P∧ Q ) ∨R ≒(P∧Q)→R ∴原等价式成立