在F[x]中,(x-3)2=x2-6x+9,若将x换成F[x]中的n级矩阵A则(A-3I)2=A2-6A+9I.
举一反三
- 在F[x]中,(x-3)2=x2-6x+9,若将x换成F[x]中的n级矩阵A则(A-3I)2=A2-6A+9I.
- 设函数$y = f({x^3})$可导,求函数的二阶导数$y'' = $( ) A: $6xf'({x^3}) + 9{x^4}f''({x^3})$ B: $6f'({x^3}) + 9{x^3}f''({x^3})$ C: $6xf'({x^3}) + 9{x^3}f''({x^3})$ D: $6{x^2}f'({x^3}) + 9{x^3}f''({x^3})$
- 设f(x)=x(x-1)(x-2)(x-3),则f’(0)=() A: -6 B: -2 C: 3 D: -3
- 已知\(f(x)\)在节点1,2处的函数值为\(f(1) = 2,f(2) = 3\) ,在节点1,2处的导数值为\(f'(1) = 0,f'(2) = - 1\) ,求 f(x) 两点三次埃米特插值多项式 A: \(H(x) = - 3{x^3} + 13{x^2} - 17x + 6\) B: \(H(x) = - 3{x^3} + 13{x^2} - 17x + 3\) C: \(H(x) = - 3{x^3} + 13{x^2} - 17x +7\) D: \(H(x) = - 3{x^3} + 13{x^2} - 17x + 9\)
- 青书学堂: 二次型 f( x 1 , x 2 , x 3 )=2 x 1 2 +5 x 2 2 +5 x 3 2 +4 x 1 x 2 −8 x 2 x 3 ,则 f的矩阵为 。