举一反三
- 证明:前[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个自然数之和的个位数码不能是 2、4、7、9
- [tex=0.643x0.786]1V9/0t4COd6RPMFD35/acA==[/tex]个座位依次从[tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex]号编到[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]号,把[tex=0.5x1.0]oYgVDn+QZqcDCRxqEZwM2A==[/tex]至[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]号的[tex=0.643x0.786]mz5xwysszIT+Zv8SWiQSKQ==[/tex]个号码分给[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个人,每人一个号码,这[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个人随意地坐到座位上,求至少有一个人手里的号码恰好与座位号码相等的概率,且当[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]很大时,给出这个概率的近似值.
- 把 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个“0”与 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个“1”随机地排列,求没有两个“1”连在一起的概率.
- 设[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]的元素全是 1, 求[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]的[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]个特征值.
- 将 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 根绳子的 [tex=1.143x1.0]cLn0Gr6CnaTTCPqvS7e1NQ==[/tex] 个头任意两两相接,求恰好结成 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个圈的概率.
内容
- 0
某人写了[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]封不同的信,欲寄往[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个不同的地址. 现将这 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 封信道意地插 入 $n$ 个具有不同通信地址的信封里,求至少有一封信插对信封的概率.
- 1
某班30名同学,一年按365天计算,至少有两人生日在同一天的概率是_____。
- 2
设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵,[tex=6.357x1.214]ktGtmiDKstx7m1f25N9jwZT5aYsjOrhIKRDobbavw6Q=[/tex] 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个特征值,求行列式 [tex=3.357x1.357]m48DvRt0hjjMuVqGpYAvJg==[/tex] 的值.
- 3
设函数[tex=17.0x1.5]3Qc8zAEodU/NXu/GRWXrWjA+U7BzHxYC9q1rJiEDxXAtMY/8hbCNs0nDXw4B8DhUK+HRgcuSMWGXl6kpCZNjFA==[/tex]([tex=5.643x1.0]O9qGQWb1YzoOCaRetv+AwVqYli7CsYhCf8ic6LfFqw8=[/tex]为实常数),证明: (1). 若[tex=3.071x1.214]Iigx1lsMFuJFc9Rt9KemEw==[/tex] 且 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 为奇数,则方程 [tex=3.143x1.357]GaUU+prLnDPZRkTgFIz5aw==[/tex] 至少有一负根。 (2). 若 [tex=3.071x1.214]b7/onK93Rg693Rvz+06n0Q==[/tex] 且 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 为奇数,则方程 [tex=3.143x1.357]GaUU+prLnDPZRkTgFIz5aw==[/tex] 至少有一正根。 (3). 若 [tex=3.071x1.214]b7/onK93Rg693Rvz+06n0Q==[/tex] 且 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 为偶数,则方程 [tex=3.143x1.357]GaUU+prLnDPZRkTgFIz5aw==[/tex] 至少有一个正根和一个负根。
- 4
设 [tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, 若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个不同的特征值且 [tex=3.857x1.0]ooePFz0xjtusf6vpqQWa8A==[/tex], 求 证: [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 相似于对角矩阵.