• 2022-06-27
    某班级有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个同学 [tex=3.714x1.357]Z77Behv/OtXw7ngnM00pAlTMpMVuPH9NQe+gdNBeRMU=[/tex],求至少有两位同学的生日在同一天的概率(设一年按 365天计).
  • 解     设事件 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 表示“至少有两位同学的生日在同一天”,则[p=align:center][tex=10.857x2.429]xN0wrU5Be/N+DCJmZknTPYi0+3BABmGBSRqYdM8BSIN+InWo4jw8Zs1fIjYdp7eSjnW78aUYmdLPRmWJ7HLI4A==[/tex].故至少有两位同学的生日在同一天的概率为 [tex=4.143x2.429]1KE1lDJwRT3BJriDqq9vxHD+d9kgKj9cNeqIvp9SctQ9Kg6Ba99J1viAsrA8aF6E[/tex]

    内容

    • 0

      某人写了[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]封不同的信,欲寄往[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个不同的地址. 现将这 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 封信道意地插 入 $n$ 个具有不同通信地址的信封里,求至少有一封信插对信封的概率. 

    • 1

      某班30名同学,一年按365天计算,至少有两人生日在同一天的概率是_____。

    • 2

      设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵,[tex=6.357x1.214]ktGtmiDKstx7m1f25N9jwZT5aYsjOrhIKRDobbavw6Q=[/tex] 是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个特征值,求行列式 [tex=3.357x1.357]m48DvRt0hjjMuVqGpYAvJg==[/tex] 的值.

    • 3

      设函数[tex=17.0x1.5]3Qc8zAEodU/NXu/GRWXrWjA+U7BzHxYC9q1rJiEDxXAtMY/8hbCNs0nDXw4B8DhUK+HRgcuSMWGXl6kpCZNjFA==[/tex]([tex=5.643x1.0]O9qGQWb1YzoOCaRetv+AwVqYli7CsYhCf8ic6LfFqw8=[/tex]为实常数),证明:   (1). 若[tex=3.071x1.214]Iigx1lsMFuJFc9Rt9KemEw==[/tex] 且 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 为奇数,则方程 [tex=3.143x1.357]GaUU+prLnDPZRkTgFIz5aw==[/tex] 至少有一负根。   (2). 若 [tex=3.071x1.214]b7/onK93Rg693Rvz+06n0Q==[/tex] 且 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 为奇数,则方程 [tex=3.143x1.357]GaUU+prLnDPZRkTgFIz5aw==[/tex] 至少有一正根。   (3). 若 [tex=3.071x1.214]b7/onK93Rg693Rvz+06n0Q==[/tex] 且 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 为偶数,则方程 [tex=3.143x1.357]GaUU+prLnDPZRkTgFIz5aw==[/tex] 至少有一个正根和一个负根。

    • 4

      设 [tex=2.0x1.214]vnzjVhyzo/NIhVUgFyjLlA==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, 若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 有 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个不同的特征值且 [tex=3.857x1.0]ooePFz0xjtusf6vpqQWa8A==[/tex], 求 证: [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 相似于对角矩阵.