设弹簧特性由下式描述:[p=align:center][tex=5.214x1.429]bCoCANADnPPqt/CMbwtuh/mLoDkBDG58AadftTUWjvg=[/tex]式中: [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]是弹簧力 [tex=0.786x1.0]tvjMD3Xe3yWnt8t1o/m99Q==[/tex] 是变形位移。若弹簧在变形位移[tex=1.786x1.0]mPefMKIxlAYdAydPFr/IPQ==[/tex]附近作微小变化,试推导 [tex=1.5x1.0]up0l2QggcloLnRD0YguIxw==[/tex] 的线 性化方程。
举一反三
- 如图[tex=1.786x1.143]yFYGssZtjHGEZ3VZPnt/+w==[/tex] 所示结构,若力[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 作用在 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 点,系统能否平衡?若力 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]仍作用在 [tex=0.786x1.0]sHo1pKm+gjxjcUAJjHrarQ==[/tex] 点,但可任意改变[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的方向,[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 在什么方向上结构能平衡?[img=256x261]1796358dd0e9d00.png[/img]
- 设[tex=5.5x1.357]jO6lZeZZ3OdVBdz43/a9oQ==[/tex],[tex=0.857x1.0]9FikB2YJlXD9Uda+jSZ+aQ==[/tex]上有如下两个关系:[p=align:center][tex=7.857x1.357]pd9l8znrdYExN6Olk0rlGnNU6qc4HWiNE29Cv4d3un4=[/tex]或[tex=3.071x1.357]40x9aRMI5okS8j0R1kO/bQ==[/tex][p=align:center][tex=8.357x1.357]KL8XkO3xClX+ZKoVjS47eSwU3UUzbwIBmTUU5XJTM/0=[/tex]求下列复合关系.(1)[tex=2.786x1.214]XzRNdcOzSrvLVZHLjp7LMD71fRT67VBA6Zd1uTtpBa8=[/tex];(2)[tex=2.786x1.214]h+sgJJ+hO7O6atHnTmbPI3Q7/1cgdmNXsz+WDhMAsds=[/tex];(3)[tex=4.357x1.214]XzRNdcOzSrvLVZHLjp7LMPh7lTZBxYOZ3aFX2Q3W6CE=[/tex].
- 设 [tex=4.071x1.286]nR/cJv6OqBZsTDNk+MpaBw==[/tex],证明不等式[p=align:center][tex=12.0x2.286]X/Ri20XB58Oz2ZfZYw8yP6qEPtmDovjJXhp8eOv8KNGfaJgnC6X1XEJ+2xzOJGQkwqKgHtAAyzdujVIOGdlO7gycABMU66WddDs30mp1D7k=[/tex]。(本题满分8分)
- 设[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]是域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的有限扩张,证明[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]中存在关于[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的本原元素的充分必要条件是[tex=0.786x1.0]I/kNMtd8YcgkWCrgriW/hA==[/tex]与[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]间只有有限个中间域。
- 设域[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的特征[tex=2.357x1.214]pbc4vZT08gszjwicRtTRnQ==[/tex],[tex=2.0x1.357]b5RgJKaKKPxfWp6M6XOn8A==[/tex],试求[tex=2.357x1.143]RXPUuGtyMsNdtHsopW2V8w==[/tex]对[tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex]的群。