已知某产品质量的变化率是时间 [tex=0.429x0.929]gQzDwVIykgengUJAyMAHkQ==[/tex] 的函数 [tex=6.143x1.357]7LGSlZ7hBHDOEa27vkcoc0LL9bBArMZGjiWmxCXILow=[/tex] 是常数 [tex=0.714x1.357]zUdy2CO+mjV1v98tk8RlTw==[/tex] 设此产品 [tex=0.429x0.929]gQzDwVIykgengUJAyMAHkQ==[/tex] 时 的产量函数为 [tex=2.071x1.357]t48l/OOGiI/Itj8fM5gz0Q==[/tex] 已知 [tex=3.5x1.357]qnt4KN0+ftdhRMOwVNwbuA==[/tex] 求 [tex=2.071x1.357]JjWgvqv/FelHrHFma+KHyg==[/tex]
举一反三
- 已知某产品产量的变化率是时间[tex=0.429x0.929]gQzDwVIykgengUJAyMAHkQ==[/tex]的函数[tex=4.571x1.357]c9fAPHlAQe+Ai8hYiFlEjQ==[/tex]([tex=1.429x1.214]rkgrF+YaaESwSQDjR6KfWg==[/tex]为常数).设此产品的产量为函数[tex=1.786x1.357]ejMbgiwLua0cCLsbox4DAg==[/tex],且[tex=3.214x1.357]Gzs6/gONCn9v6u0Eu/ytyA==[/tex],求[tex=1.786x1.357]9OHjYXz1gPPkAsNtcHDGog==[/tex].
- 已知某产品产量的变化率是时间[tex=0.429x0.929]M8iz78GYgXr/9Z4SMSfKTw==[/tex]的函数[tex=4.571x1.357]sr0aWnJ59GbP6ZWsF1CAy3j7SnDcTYfzq31sa+ZjoqA=[/tex](a,b是常数)设此产品[tex=0.429x0.929]M8iz78GYgXr/9Z4SMSfKTw==[/tex]时的产量函数为[tex=1.786x1.357]ecZ1T/dp1e0kZe0wMs3hmw==[/tex],已知[tex=3.214x1.357]gNTeEeicIuwSuD4NA+vj5w==[/tex],则[tex=2.571x1.357]Wujr2Ymb0qEYQbohJ9oOVg==[/tex][u] [/u]
- 已知某产品的变化率是时间[tex=0.429x0.929]r8lLiDb0KHTzu/2y/Au89w==[/tex]的函数[tex=4.571x1.357]ZVoG7PFnWXaeTL75AcAcXw==[/tex]([tex=0.571x0.786]c59+3vo0/Vn/FvNRhDRu5g==[/tex], [tex=0.429x1.0]JThLUuJ8WswSAPiYZWihWg==[/tex]为常数),设此产品的产量为[tex=1.786x1.357]ejMbgiwLua0cCLsbox4DAg==[/tex],且[tex=3.214x1.357]Gzs6/gONCn9v6u0Eu/ytyA==[/tex],求[tex=1.786x1.357]ejMbgiwLua0cCLsbox4DAg==[/tex].
- 设函数f(x)在[tex=3.286x1.357]64m0xE4nFlaKGIakApV0PA==[/tex]上连续,且有f(0)=0及f'(x)单调增,证明:在[tex=3.5x1.357]vgrW1/jK/GZ1TOWaPFIQWA==[/tex]上函数[tex=5.071x2.429]KmCvFjqAEA9O51+9erVGP+KtDDqVtXZQWqxj1eiTO5k=[/tex]是单调增的。
- 一质点沿直线运动, 其运动学方程为 [tex=6.571x1.5]L8q/HdFgTK1qjJ7HV3c+EWnPAyFp8w7GXZTHMGGCP0M=[/tex]. 求: (1) 在 [tex=0.429x0.929]gQzDwVIykgengUJAyMAHkQ==[/tex] 由 0 至 [tex=1.0x1.0]KPsXl6uRbeeg5mTuJVjjNw==[/tex] 的时间间隔内, 质点的位移大小;(2)在 [tex=0.429x0.929]gQzDwVIykgengUJAyMAHkQ==[/tex] 由 0 到 [tex=1.0x1.0]KPsXl6uRbeeg5mTuJVjjNw==[/tex] 的时间间隔内质点走过的路程.