设 [tex=6.0x1.214]aJ6ilKOMd+Qhji0Ydv6BLEeRQkFLrcudDhs9wTevVVY=[/tex] 是数域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上向量空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的 [tex=0.929x0.786]VF0GLe2VBE/4VKNzpyOfFg==[/tex] 个真子空间,证明:[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 中必有一组基, 使得其中每个基向量都不在诸 [tex=0.857x1.214]cwRVu8HBwDHmaiBxi9Ne3Q==[/tex] 的并中.
举一反三
- 设[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]是数域上的线性空间,证明[tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex]有一组基.
- 设 [tex=2.071x1.214]0aqQOsaNf6jKrWhlACndVg==[/tex] 都是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上线性空间 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的子空间,证明 [tex=10.714x2.071]BlbRV6hmnF5YbAykKbuM83aiLvA61LxU+GqrrNExjMNg3izsles3R25gcUECl8eH[/tex].
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上一个线性空间. 证明: 若 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是有限维的, 则 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的任一子空间都是某些线性函数的零化子空间.
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 是数域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的一维空间, 写出 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 上所有的线性变换[input=type:blank,size:6][/input]
- 设 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 和 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 是数域 [tex=0.643x1.0]0WA5oCO54gKWR/jKi5M2Zw==[/tex] 上的向量空间, [tex=5.429x1.0]5XWH7n5GxMHnX5nq+6dNyVv08PxRWhXq62sIUFVWQn5AtOp5a55Sjoba/INzUbjU[/tex] 是 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 的一组基, [tex=5.786x1.0]rkTpN1N8fnivSCMqkApx5h1kL8np/aV+PV/kl1bYUP5FcQ6KJiSaGI+kCAWWoQxO[/tex] 是 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 中 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 个向量, 求证: 必存在 [tex=0.643x1.0]jro2X/cRz2SsmjZvcOdvsQ==[/tex] 到 [tex=0.714x1.0]X6uqj1A7AQmRFBpFsTbZTg==[/tex] 的唯一的线性映射 [tex=0.714x1.0]OqF+/h/mAb1/2XhJuj27xg==[/tex], 使 [tex=4.071x1.357]YTKB7Lm/TRd5jffCkeKNV5GxJua+o6w2yz+r4g0mWArdwin4hyBX+dmneblYN28a[/tex]