若,则方程f(4x)=x的根是( )
A:
B: ﹣
C: 2
D: ﹣2
A:
B: ﹣
C: 2
D: ﹣2
A
举一反三
- 若函数f(x)=x-1x,则方程f(4x)=x的根是______.
- 已知函数f(x)是定义在(-∞,+∞)上的奇函数,当x∈[0,+∞)时,f(x)=x()2()-4x,则当x∈(-∞,0)时,f(x)=()(5.0分)A.()x()2()+4x()B.()x()2()-4x()C.()-x()2()+4x()D.()-x()2()-4x
- 设$f(x)=x^2$,$g(x)=2^x$, 那么 $f \circ f \circ g=$ A: $2^{x^4}$ B: $2^{4x}$ C: $x^{2^{2x}}$ D: $x^{2^{x^2}}$
- 已知\( y = {x^2} + 4x \),则\( dy \)为( ). A: \( (2x + 4)dx \) B: \( 2xdx \) C: \( ({x^2} + 4)dx \) D: \( ({x^2} + 4x)dx \)
- 若函数$f(x)$具有二阶导数,且$y=f({{x}^{2}})$,则$y'' =$( )。 A: $f'' ({{x}^{2}})$ B: $2f'’ ({{x}^{2}})$ C: $2f’ ({{x}^{2}})+4{{x}^{2}}f’' ({{x}^{2}})$ D: $4{{x}^{2}}f’ ({{x}^{2}})+2f'' ({{x}^{2}})$
内容
- 0
已知\( y = {x^2}{e^{ - x}} \),则\( y'' \)为( ). A: \( 2{e^{ - x}} - 4x{e^{ - x}} - {x^2}{e^{ - x}} \) B: \( 2{e^{ - x}} - 4x{e^{ - x}} + {x^2}{e^{ - x}} \) C: 0 D: \( 2{e^{ - x}} - 4x{e^{ - x}} \)
- 1
将函数\(f(x)=\sin^4 x\)展开成Fourier级数为 ____ . A: \(f(x) = \frac{3}{8}-\frac{1}{2}\cos 2x +\frac{1}{8}cos 4x\) B: \(f(x) = \frac{1}{4}-\frac{1}{2}\cos x +\frac{3}{8}cos 4x\) C: \(f(x) = \frac{1}{4}-\frac{1}{2}\sin 2x -\frac{3}{8}cos 4x\) D: \(f(x) = \frac{3}{8}-\frac{1}{2}\sin x -\frac{1}{8}cos 4x\)
- 2
11、下列说法错误的是( )A、x=2是方程x-10=-4x的解B、方程2x+4=5x-2的解是x=2C、x=2和x=-2都是方程x2=4的解D、x=y不是方程
- 3
若[x]补=0.0010010,则[-x]补= ,[-4x]补= ,[x/2]补= 。
- 4
若\(f(x) = {2^x} + {x^2}\),则\(f'(x) = 2^xln2+2x\)