设A为n阶正定矩阵,B为n阶半正定矩阵,试证:A+B为正定矩阵.
对于任意n维向量x,有[tex=12.214x1.5]9Sz8yG1y4nRPqItgoQOnTDEl0TvOqwuKRMA6Wce+sp8Qxl51BhaQNa5xWifW4NVf5c9q2ch5TCRP72U0API89mWUhBrDTHPOpU/+tCqDQf6HhEIgDzT/RRO5uyRWP/6ToZX+1QEvULi57YuufN6UhhywI0eSKiqtYZX/im/1qHm2657waOxSNSSJ8KdPZqhBS3MtF0rDwNaW/m/AXnBKXpvueh3kZKQ4C0bxUtYSi0du1SagUO3O2wo1jHbWGyV+[/tex].又因为A为正定矩阵,B为半正定矩阵,即[tex=9.571x1.429]9Sz8yG1y4nRPqItgoQOnTDpI72eU0KRT0RLopG3SE8FLPcxFrz4g3Bjf9sbvdiXSHSopWqwuhsBkizlv4FuMxc73maLspxRMTHIckUGHVzawaI+meyPZD+s+M+GDfC2H4s0rG0IQKuOWm/+f/0MjwK3JLjSDEcbbvHE+/5gUMPI=[/tex],据此[tex=7.0x1.5]9Sz8yG1y4nRPqItgoQOnTDEl0TvOqwuKRMA6Wce+sp8Qxl51BhaQNa5xWifW4NVf5c9q2ch5TCRP72U0API89uiIMGpJM4XPld/FHMyiM00=[/tex].又由[tex=8.286x1.5]95l45PjlG6z6EXOMXiCKI0S6lKuUdYJpOgS3I6rNDUiY9B03ZOC2T/ProZwaNfOpPwM6VzjHwR4pICa3sb2gz3yEhlkJp01Yq1Il+Jv9rXeWF+hAJ3vQLna4g0yK4moYL6vMKMVDdXPemsEche0/gg==[/tex]可知A+B是对称矩阵,所以A+B为正定矩阵.
举一反三
内容
- 0
【多选题】设A是n(>1)阶正定矩阵,则下列结论正确的是(B,C,D) A. B. C. D. 也是正定矩阵 E. 也是正定矩阵, 为 阶实矩阵
- 1
设AB均为n阶正定矩阵,下列各矩阵中不一定是正定矩阵的是().
- 2
设A为n阶对称矩阵,则A是正定矩阵的充分必要条件是
- 3
设\(A,B\)为\(n\)阶正定矩阵,,则( )是正定矩阵。 A: \( AB \) B: \( {A^*} + {B^*} \) C: \( {A^{ - 1}} - {B^{ - 1}} \) D: \( {A^T} - {B^T} \)
- 4
设A是n阶正定矩阵,则| A+E | > 1. ( )