设[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]都是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶非零矩阵,且[tex=2.786x1.0]fRzt4Szp2g1jk8H8uWNBqQ==[/tex],则[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex]和[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]的秩( )。
未知类型:{'options': ['必有一个等于 0', '都小于[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]', '一个小于[tex=0.643x0.786]h6IfGOxBlahC8le5jX4WiA==[/tex],一个等于[tex=0.643x0.786]h6IfGOxBlahC8le5jX4WiA==[/tex]', '都等于[tex=0.643x0.786]h6IfGOxBlahC8le5jX4WiA==[/tex]'], 'type': 102}
未知类型:{'options': ['必有一个等于 0', '都小于[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]', '一个小于[tex=0.643x0.786]h6IfGOxBlahC8le5jX4WiA==[/tex],一个等于[tex=0.643x0.786]h6IfGOxBlahC8le5jX4WiA==[/tex]', '都等于[tex=0.643x0.786]h6IfGOxBlahC8le5jX4WiA==[/tex]'], 'type': 102}
举一反三
- 设 [tex=2.214x1.214]YsxUk3RpCEL54ROD5kt0RJo8Jg3PZ9YFvmPV4aO5za/jW8pAoxQ3l0yVPiczodW7[/tex]都是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶非零矩阵,且[tex=3.071x1.0]gKDMyD95ZZVy55+F/26LEpL+AZJmg9X/MuczKhYn63nrGzSablpTE10TxZ4ckTsJ[/tex], 则[tex=0.929x1.0]zkuxy59wnc0FrSuUc1OFF6pw7am5S+IP5AAfiovVsGI=[/tex]和[tex=0.929x1.0]GTnOCR9hNPsOuxGSyBGTAE4D+bwdNZdKWKqAkIkho7A=[/tex]的秩( ) 未知类型:{'options': ['必有一个等于零\xa0', '都小于[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]', '一个小于[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex], 一个等于[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]', '都等于[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]'], 'type': 102}
- 设[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]都是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶非零方阵,且[tex=2.786x1.0]LBYk3O7dWJ1maJJpCnhglQ==[/tex],证明[tex=6.786x1.357]GRztE9qvQEbkFVeE2YU0R/fA/olR4VYz4itvhuSXPiA=[/tex]
- 设[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]均为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵,则 [tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]合同的充要条件是( ),且说明理由. 未知类型:{'options': ['[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]均为可逆矩阵', '[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]有相同的秩', '[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]有相同的正惯性指数,相同的负惯性指数', '[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]有相同的特征多项式'], 'type': 102}
- 设[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]均为[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶实对称矩阵,证明:[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex]与[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]相似[tex=2.071x1.0]bMRrINhuwlMbjrHDeWypokpo0JQSnc3jAYoFoO0siCE=[/tex] , [tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]有相同的特征多项式.
- 设[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex],[tex=0.786x1.0]EsJDtGYVBcAkNM+hi9jDJg==[/tex]是[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶矩阵,且[tex=0.786x1.0]kEam2pLJe4uAYVdcny2W5g==[/tex]可逆,证明:[tex=1.571x1.0]ZT2ndRlmVScNtr8tRaWqog==[/tex]与[tex=1.571x1.0]39kvwgjRy4Zccv3OOZwTRg==[/tex]相似。