证明:若矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]正定,则矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex] 的主对角线元素全大于零。
举一反三
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]为[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正定矩阵,证明[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的伴随矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]仍为正定矩阵.
- 已知[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是[tex=0.643x1.286]ZsZs11iKEvfmzDIurZth8g==[/tex]阶正定矩阵,证明:[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的伴随矩阵[tex=1.143x1.286]5WX0zEPSvFFLZ40WpRWDWQ==[/tex]也是正定矩阵。
- 证明:若[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是正定矩阵,则[tex=1.714x1.286]TO1yVSeu6VTkH5eqe0g3AQ==[/tex]也是正定矩阵.
- 设[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]是上三角正交矩阵,证明:[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]一定是对角矩阵,且它的主对角元素是1或[tex=1.214x1.286]WDa3CFFbujv+acHNTSW8sQ==[/tex].
- 设 3 阶矩阵[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的特征值互不相同,若行列式[tex=3.071x1.286]FYCnFYQQa8C3I+O2sfSSGA==[/tex], 则[tex=0.786x1.286]pi/GsQ3apuRt43V3XQq/tA==[/tex]的秩为 A: 0 B: 1 C: 2 D: 3