设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]35ReWWGs/YPu3n9y5K5w7g==[/tex] 阶矩阵, 若 [tex=3.0x1.0]ApBtKiFHAOgbksEzlkUgQecn5ATzZirYjqpW/G5GCKs=[/tex], 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 相似于一个主对角线上元素 全等于零的矩阵.
举一反三
- 求证: 若 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和对角矩阵 [tex=9.286x1.357]4hVOD4TWSI62OX9AhSJlcFT9/s8GpEqLGvCv8s+mV12qyqoqYS5txrxH/yqVh2LI[/tex] (或任意一个主对角元素互不相同的对角矩阵) 乘法可交换, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 必是对角矩阵; 若进一步 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 还和第一类初等矩阵可交换, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 必是数量矩阵 [tex=1.429x1.214]FxIjkBm1yL0dMFtX1spLfQ==[/tex] (由此可知, 矩阵 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是数量矩阵的充要条件是 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 和所有可逆矩阵可交换).
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实对称矩阵, 求证: 若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是严格对角占优阵且主对角线上的元素全为正, 则[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是正定阵.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶实 (复) 矩阵, 则 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 可分解为 [tex=3.143x1.214]bx9fPZCBMZvYv69nOgo9Ew==[/tex], 其中 [tex=0.857x1.214]to/MrMoO1ux8UhZHnpEvBg==[/tex] 是正交 (酉) 矩阵, [tex=0.786x1.0]AOSTmhvIsOwsdZlGoks7dg==[/tex] 是一个上三角矩阵且主对角线上的元素全大于等于零, 并且若 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 可逆矩阵, 则这样的分解必唯一.
- 设 [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是 [tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex] 阶矩阵, [tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 适合下列条件 ( ) 时, [tex=2.429x1.214]w0DJAkqgaLBmdaL0DbtIKg==[/tex] 必是可逆矩阵. 未知类型:{'options': ['[tex=2.643x1.0]T6KgxyahhCNAGhkx/jtGQw==[/tex]', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 是可逆矩阵', '[tex=2.643x1.357]ynAnlsS4a0FhNAU9AfGT6A==[/tex]', '[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex] 的主对角线上元素全为零'], 'type': 102}
- 若[tex=0.643x0.786]/he/ol8BkDuTTL9yMPtH4Q==[/tex]阶对角阵[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]的主对角线元素互不相同,试证与[tex=0.786x1.0]b4HkKtHXeHofHX/gJc8Agg==[/tex]可交换的矩阵必是对角阵.